期刊文献+

基于图的多视角聚类算法综述 被引量:1

A Survey of Graph-based Multi-view Clustering Algorithms
下载PDF
导出
摘要 多视角聚类通过利用多视角之间的互补性和一致性信息来提高聚类的性能。近年来受到越来越多的关注。为了及时掌握目前基于图的多视角聚类算法的研究现状与最新技术,对大量的、最新的多视角图聚类进行调查、归纳整理、分类及总结。根据多视角聚类涉及的算法机制和数学原理,并进一步分为基于图、基于网络和基于谱的聚类方法。不仅详细介绍了每一类算法数学原理、算法模型,而且还举例说明了这些算法的应用。报告了基于图的多视角聚类的现状,最后总结了各类算法的优缺点,并指出了当下的挑战以及未来研究发展的方向。 Multi-view clustering(MvC)can improve the performance of clustering by using the complementary and consistent information between multi-view. More and more attention has been paid to it in recent years. In order to grasp the current research status and the latest technology of Graph-based multi-view clustering algorithms,and a large number of the latest MvC surveys,induction,sorting,classification and summary. According to the Algorithm Mechanism and mathematical principle of MvC,and it is further divided into graph-based,network-based and spectral-based clustering methods. Not only the mathematical principles and models of each kind of algorithms are introduced in detail,but also the applications of these algorithms are illustrated with examples. This paper reports the status of graph-based MvC in which summarizes the advantages and disadvantages of various algorithms,and points out the current challenges and future research directions.
作者 王春杰 何进荣 王文发 WANG Chunjie;HE Jinrong;WANG Wenfa(School of Mathematics and Computer Science,Yan'an University,Yan'an 716000)
出处 《计算机与数字工程》 2022年第2期229-237,255,共10页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:61902339,61763046) 国家自然科学基金地区项目(编号:618660389)资助。
关键词 图聚类 网络聚类 谱聚类 多视角聚类 图构造 多维特征 图融合 graph clustering network clustering spectral clustering multi-view clustering(MvC) graph structure multi-dimensional feature feature fusion
  • 相关文献

参考文献5

二级参考文献34

  • 1钱锋,徐麟文.知识发现中的聚类分析及其应用[J].杭州师范大学学报(自然科学版),2001,5(1):34-37. 被引量:16
  • 2李桂林,陈晓云.关于聚类分析中相似度的讨论[J].计算机工程与应用,2004,40(31):64-65. 被引量:26
  • 3蒋盛益,李庆华,李新.数据流挖掘算法研究综述[J].计算机工程与设计,2005,26(5):1130-1132. 被引量:21
  • 4Bisgin H,DalfesH N.Parallel ClusteringAlgorithms with Application to Climatology[D].Istanbul Technical University,2008.
  • 5Gad W K,Kamel M S.New Semantic Similarity Based Model for Text Clustering Using Extended Gloss Overlaps[C]∥Proc of MLDM’09,2009:663-667.
  • 6Ingaramo D,Errecalde M,Cagnina L,et al.Particle Swarm Optimization for Clustering Short-Text Corpora[C]∥Proc of the Computational Intelligence and Bioengineering,2009:3-19.
  • 7Wang Y,Cheung Y,Liu H.An Efficient Algorithm for Clustering Search Engine Results[C]∥Proc of the CIS’06,2006:661-671.
  • 8Maulik U,Bandyopadhyay S.Genetic Algorithm Based Clustering Technique[J].Pattern Recognition,2000,33(9):1455-1465.
  • 9Margaret H.Dunham.数据挖掘教程[M].北京:清华大学出版社,2005.
  • 10L. Kaufman and P. J Rousseeuw. Finding Groups in Data:An Introduction to Cluster Analysis [ M ]. New York: John Wiley & Sons, 1990

共引文献61

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部