期刊文献+

多归一化因子的LDPC译码算法 被引量:1

LDPC decoding algorithm with multiple normalization factors
下载PDF
导出
摘要 为提高低密度奇偶校验码的译码性能,更好满足5G系统对于误码率的需求,提出多归一化因子最小和(multiple normalized dactors min-sum,MNF-MS)算法。此算法以归一化最小和(normalized min-sum,NMS)与密度演化最小和(density evolution min-sum,DE-MS)算法为基础,将蒙特卡罗仿真求归一化因子的方法进行简化,求得校验节点信息平均绝对值和最小绝对值的比值,这个比值加上一个大于零的权值得到对应校验节点的归一化因子,迭代次数平均分为5组,每组使用不同的权值。仿真结果表明,所提算法与现有算法相比,其译码性能更为优异。 In order to improve the decoding performance of low-density parity codes and better meet the requirements of 5G system for bit error rate,this paper proposed MNF-MS(multiple normalized factors min-sum)algorithm.This algorithm is based on NMS(normalized min-sum)and DE-MS(density evolution min-sum)algorithm and the method of calculating the normalization factor by Monte Carlo simulation is simplified.First,the ratio of the average absolute value of the information of the verification node to the minimum absolute value was obtained.Then,the ratio plus a weight greater than zero was used to get the normalization factor of the corresponding verification node.The number of iterations was divided into five groups,and each group used different weights.The simulation results show that the decoding performance of the algorithm proposed in this paper is about 0.15 dB better than that of the DE-MS algorithm when the error rate is 10^(-6).
作者 陈发堂 王永航 张翰卿 CHEN Fatang;WANG Yonghang;ZHANG Hanqing(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2022年第1期59-64,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家科技重大专项资助项目(2017ZX03001021)。
关键词 低密度奇偶校验码 归一化因子 信道编码 译码性能 low density parity code normalized factors channel coding decoding performance
  • 相关文献

参考文献1

二级参考文献1

共引文献7

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部