摘要
对于复杂的应用场景,传统的目标检测无法给出满意的检测效果。阐述深度学习方法,采用Faster RCNN目标检测算法实现复杂场景下的目标检测。Faster RCNN目标检测算法借助卷积神经网络、区域提议网络、边界框回归算法,获取目标的区域特征进行目标分类和定位。实验结果表明,将Faster RCNN目标检测算法应用于复杂场景下的目标检测,可显著提高目标的检测效果。
For complex application scenarios, traditional target detection cannot give satisfactory detection results. Based on the deep learning method, Faster RCNN target detection algorithm is used to achieve target detection in complex scenes. The Faster RCNN target detection algorithm uses convolutional neural networks, region proposal networks, and bounding box regression algorithms to obtain the regional features of the target for categorizing the target and determining the location of the target. Experimental results show that applying Faster RCNN target detection algorithm for target detection in complex scenes can significantly improve the target detection effect.
作者
刘琦
蔡旭
黄飞
吴一楠
LIU Qi;CAI Xu;HUANG Fei;WU Yinan(School of Information Engineering,Huangshan University,Anhui 245041,China;Huangshan Ruixing Automotive Electronics Co.,Ltd.,Anhui 245461,China)
出处
《集成电路应用》
2022年第2期112-113,共2页
Application of IC
基金
安徽省科技厅重点研究与开发计划--国际科技合作专项(202104b11020031)
安徽省教育厅高校科学研究项目(KJ2021A1044)
黄山学院大学生创新创业训练计划项目(S202010375006,S202010375049,S201910375094)。