期刊文献+

相位恢复:理论、模型与算法 被引量:5

PHASE RETRIEVAL:THEORY,MODEL AND ALGORITHMS
原文传递
导出
摘要 相位恢复在多个不同领域均被提出,如量子力学、光学成像等.相位恢复即具有多种应用背景,亦具有丰富的数学内涵,因而近期该问题吸引了多个不同领域专家的关注,如计算数学、数据科学、最优化、代数几何等.本文将主要介绍相位恢复中的理论基础问题,特别是最少观测次数问题,并介绍求解相位恢复的模型性能,以及求解算法等.本文也介绍了一些当前相位恢复中研究的热点方向. Phase retrieval is raised in many areas,such as imaging,optics and quantum tomography etc,which attracts many attentions of experts from different areas,such as computational mathematics and data sciences etc.The aim of this paper is to introduce the basic theoretical problems in phase retrieval and also introduce many algorithms for solving phase retrieval.
作者 许志强 Xu Zhiqiang(LSEC,Institute of Computational Mathematics,Academy of Mathematics and System Sciences,Chinese Academy of Sciences,Beijing 100190,China)
出处 《计算数学》 CSCD 北大核心 2022年第1期1-18,共18页 Mathematica Numerica Sinica
基金 国家杰出青年基金(12025108) 国家自然科学基金(12021001,11688101)资助。
关键词 相位恢复 非线性最小二乘 矩阵恢复 交替投影. phase retrieval nonlinear least square matrix recovery alternating pro-jection method.
  • 相关文献

参考文献1

二级参考文献49

  • 1Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations. Constr Approx, 1997, 13: 57-98.
  • 2Natarajan B K. Sparse approximate solutions to linear systems. SIAM J Comput, 1995, 24: 227-234.
  • 3Pinkus A. On Ll-Approximation. Cambridge Tracts in Mathematics 93. Cambridge: Cambridge University Press, 1989.
  • 4Gribonval R, Nielsen M. Sparse representations in unions of bases. IEEE Trans Inform Theory, 2003, 49: 3320-3325.
  • 5Donoho D L, Huo X. Uncertainty principles and ideal atomic decompositions. IEEE Trans Inform Theory, 2011, 47: 2845-2862.
  • 6Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans Inform Theory, 2002, 48: 2558-2567.
  • 7Candes E, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51: 4203-4215.
  • 8Candes E. The restricted isometry property and its implications for compressed sensing. C R Math Acad Sci Paris Ser I, 2008, 346: 589-592.
  • 9Candes E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006, 59: 1207-1223.
  • 10Cai T, Wang L, Xu G. Shifting inequality and recovery of sparse signals. IEEE Trans Signal Process, 2010, 58: 1300-1308.

共引文献58

同被引文献28

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部