期刊文献+

Integration of Droplet Microfluidic Tools for Single-cell Functional Metagenomics:An Engineering Head Start 被引量:2

原文传递
导出
摘要 Droplet microfluidic techniques have shown promising outcome to study single cells at high throughput.However,their adoption in laboratories studying“-omics”sciences is still irrelevant due to the complex and multidisciplinary nature of the field.To facilitate their use,here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput.First,a device encapsulating single cells in droplets at a rate of~250 Hz is described considering droplet size and cell growth.Then,we expand on previously reported fluorescence-activated droplet sorting systems to integrate the use of 4 independent fluorescence-exciting lasers(i.e.,405,488,561,and 637 nm)in a single platform to make it compatible with different fluorescence-emitting biosensors.For this sorter,both hardware and software are provided and optimized for effortlessly sorting droplets at 60 Hz.Then,a passive droplet merger is also integrated into our pipeline to enable adding new reagents to already-made droplets at a rate of 200 Hz.Finally,we provide an optimized recipe for manufacturing these chips using silicon dry-etching tools.Because of the overall integration and the technical details presented here,our approach allows biologists to quickly use microfluidic technologies and achieve both single-cell resolution and high-throughput capability(>50,000 cells/day)for mining and bioprospecting metagenomic data.
出处 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2021年第3期504-518,共15页 基因组蛋白质组与生物信息学报(英文版)
基金 The work was supported by the grants from King Abdullah University of Science and Technology(KAUST),Saudi Arabia(Grant Nos.BAS/1/1059/01/01,URF/1/1976/03/01,URF/1/1976-17-01,URF/1/1976-20-01,and FCS/1/3326-01-01).
  • 相关文献

参考文献1

二级参考文献69

  • 1Anbu P, Gopinath SC, Chaulagain BP, Tang TH, Citartan M. Microbial enzymes and their applications in industries and medicine 2014. Biomed Res Int 2015;2015:816419.
  • 2Uchiyama T, Miyazaki K. Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 2009;20:616-22.
  • 3Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995;59:14349.
  • 4Jeon JH, Kim JT, Kim YJ, Kim HK, Lee HS, Kang SG, et al. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 2009;81:865-74.
  • 5Simon C, Daniel R. Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 2009;85:265-76.
  • 6Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol 2011 ;77:1153-61.
  • 7Lopez-Lopez O, Cerdan ME, Gonzalez Siso MI. New extremo- philic lipases and esterases from metagenomics. Curr Protein Pept Sci 2014;15:445-55.
  • 8Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 1998;5: R245-9.
  • 9Schloss PD, Handelsman J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol 2003;14:303-10.
  • 10Steele HL, Street WK. Mettgenotaics- advances ,n eco!,og and biotechnology. FEMS Microbiol Lett 2005;247:105-11.

共引文献1

同被引文献34

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部