摘要
针对石油成品油输油管道泄漏检测易出现持续性重复报警和大量误报的问题,提出采用大数据聚类算法,建立成品油管道聚类算法模型。以湖南成品油输油管道为例,通过大数据模拟不同工况下离群系数的变化规律,对离群系数阈值进行总结,设立不同工况的阈值,提高了石油成品油输油管道泄漏检测的准确度。
In order to solve the problems of continuous repeated alarm and a large number of false alarms in leakage detection of oil product pipeline,a clustering algorithm model of oil product pipeline based on big data clustering algorithm is proposed.Taking Hunan oil product pipeline as an example,through simulating the changing law of outlier coefficient under different working conditions using big data,the outlier coefficient threshold is summarized,and the threshold under different working conditions is set up to improve the accuracy of oil product pipeline leakage detection.
作者
李鑫伟
刘瑞哲
Li Xinwei;Liu Ruizhe
出处
《石油库与加油站》
2022年第1期1-5,共5页
Oil Depot And Gas Station
关键词
石油
成品油
管道
泄漏
检测
大数据
聚类算法
应用
petroleum
oil product
pipeline
leakage
detection
big data
clustering algorithm
application.