期刊文献+

不同偏流角下潮流能水轮机水动力特性与熵产率分析 被引量:2

Analysis of Hydrodynamic Performance and Entropy Production Rate of Tidal Current Turbine Under Different Deviant Angle
下载PDF
导出
摘要 采用CFD与熵产理论相结合的手段,分析了不同偏流角对潮流能水轮机水动力特性的影响,发现偏流使无导管水轮机和导管水轮机输出功率及轴向推力均不同程度地降低,偏流20°时,两者功率最大下降率分别达到30.6%、16.8%,转子轴向推力最大下降率分别达到30.2%、19.8%。由于导管的聚流效应,不同偏流角下导管水轮机相比无导管水轮机仍保持较高的输出功率。在处于低叶尖速比时,直接耗散熵产损失对水轮机能量获取影响较大,此范围内总熵产损失较低;在高叶尖速比时,湍流耗散损失对水轮机能量获取影响较大,此范围内总熵产率随叶尖速比的增加而快速上升,导致水轮机输出率随叶尖速比的增加而不断下降。 The hydrodynamic performance of a tidal current turbine with different deviant angles is studied by the combination of CFD and entropy production theory. The results show that the output power and axial thrust of the ducted turbine and the bare turbine are reduced under action of the bias current. When the deviant angle is 20°, the maximum power drop reaches 30.6% and 16.8% respectively, and the maximum decrease of axial thrust is 30.2% and 19.8% respectively. Compared with the bare turbine, the ducted turbine with different yaw angles still maintains higher output power due to the accumulation effect of duct. When the ratio of blade tip is low, the loss of direct entropy production has a great impact on the energy acquisition of the turbine, and the total entropy loss is lower in this range;In the case of high tip speed ratio, the turbulence dissipation loss has a great impact on the energy acquisition of the turbine, and the total entropy production loss increases rapidly with the rising of tip speed ratio, which is contributed to the decrease of output power of the turbine with the rising of tip speed ratio.
作者 虎周平 王文全 HU Zhou-ping;WANG Wen-quan(Faculty of Civil Engineering and Mechanics,Kunming University of Science and Technology,Kunming 650500,China;State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University,Chengdu 610065,China;College of Water Resource&Hydropower,Sichuan University,Chengdu 610065,China)
出处 《水电能源科学》 北大核心 2022年第2期177-181,共5页 Water Resources and Power
基金 国家自然科学基金项目(51479085)。
关键词 潮流能水轮机 偏流 水动力性能 熵产率分析 tidal current turbine yawing flow hydrodynamic performance entropy production analysis
  • 相关文献

参考文献2

二级参考文献10

  • 1H. Herwig,F. Kock.Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems[J].Heat and Mass Transfer.2007(3)
  • 2M. Sasikumar,C. Balaji.Optimization of convective fin systems: a holistic approach[J].Heat and Mass Transfer.2002(1)
  • 3王传嵬,卢苇.海洋能资源分析方法及储量评估[M].北京:海洋出版社,2009.
  • 4Jeong Min-Soo, Kim Sang-Woo, Lee In, et al. The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade[J]. Renewable Energy, 2013, 60: 256-268.
  • 5Pesmajoglou S D, Graham J M R. Prediction of aerodynamic forces on horizontal axis wind turbines in free yaw and turbulence[J]. Wind Engineering and Industrial Aerodynamics, 2000, 86(1) : 1-14.
  • 6Sant T, Van Kuik G, Van Bussel G. Estimating the unsteady angle of attack from blade pressure measurements on the NREL Phase VI rotor in yaw using a free wake vortex model[A]. 44th AIAA Aerospace Sciences Meeting and Exhibit[C], Reno, Nevada, 2006.
  • 7Bahaj A S, Molland A F, Chaplin J R, et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank [J]. Renewable Energy, 2007, 32(3) : 407-426.
  • 8吕忻,郭佩芳.我国潮流能资源开发评述[J].海洋湖沼通报,2011(1):26-30. 被引量:20
  • 9周文平,唐胜利.水平轴风力机稳定偏航气动性能计算[J].太阳能学报,2011,32(9):1315-1320. 被引量:10
  • 10王树齐,肖钢,张亮,荆丰梅.潮流能水平轴水轮机支撑立柱干扰研究[J].华中科技大学学报(自然科学版),2014,42(4):81-85. 被引量:11

共引文献9

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部