摘要
为研究线性Boussinesq方程的周期初边值问题解在大波数条件下的渐近行为,通过将方程解表示成Fourier级数形式,利用Matlab软件进行数值模拟.结果表明:方程色散关系的渐近行为对方程解在大波数条件下的渐近行为起决定性作用,线性Boussinesq方程存在色散量子化现象.
In this paper, we study the asymptotic behavior of solutions to periodic initial boundary value problem for linear Bousssinesq equation with large wave numbers. By expressing the solution of the equation in Fourier series, Matlab is used for numerical simulation. The simulation results show that the asymptotic behavior of the dispersion relation plays a decisive role in the asymptotic behavior of the solution of the equation on the condition of large wave numbers, which indicates that the dispersion quantization phenomenon exists in the linear Bousenisq equation.
作者
张苗苗
李茂华
ZHANG Miaomiao;LI Maohua(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)
出处
《宁波大学学报(理工版)》
CAS
2022年第2期27-34,共8页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
国家自然科学基金(12111530003)
宁波市自然科学基金(2018A610197)。
关键词
线性Boussinesq方程
周期初边值问题
色散关系
渐近行为
色散量子化
linear Bousssinesq equation
periodic initial boundary value problem
dispersion relation
asymptotic behavior
quantization of dispersion