期刊文献+

微通道换热器大温差条件下流动换热研究 被引量:3

Investigation on Flow and Heat Transfer in Microchannel Heat Exchanger With Large Temperature Differences
原文传递
导出
摘要 随着高效预冷器在航天航空领域发挥越来越重要的作用,紧凑高效换热器的研究成为了人们关注的热点。本文基于紧凑微通道换热器的几何特征,针对矩形截面平行流道换热器内超临界压力低温流体(氢和氦)在大温差条件下的流动换热现象进行数值模拟研究。通道截面边长小于1 mm,热流体氦和冷流体氢的进出口温差均大于600 K。通道内流体换热系数在顺流和逆流条件下有不同的变化趋势,并出现峰值。换热量随着通道宽度的增大而增大,流动压降随着通道宽度的增大而减小。冷热流体逆流时换热量大,压降较小,但对换热器材料要求较高。 As the high efficiency pre-cooler plays an important role in the field of aerospace,the study of high efficiency compact heat exchanger becomes a concerned topic.Based on the geometric characteristics of the compact microchannel heat exchanger,the flow and heat transfer of cryogenic fluids(hydrogen and helium)at supercritical pressures in parallel heat exchanger with a rectangular cross-section is numerically investigated.The length and width of the channel cross-section is less than 1 mm.The temperature differences of the hot fluid helium and the cold fluid hydrogen at the inlets and outlets are greater than 600 K.It is shown that the heat transfer coefficient in the channel has different patterns of variations and peak values under the conditions of parallel-flow and counter-flow.The heat transfer increases with the increase of the channel width,and the pressure drop decreases with the increase of the channel width.When the hot and cold fluids are countercurrent,the heat transfer is better than the co-current condition and the pressure drop is smaller.
作者 宋昱 姜培学 SONG Yu;JIANG Pei-Xue(Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2022年第2期485-489,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金青年科学基金(No.51606109) 国家自然科学基金联合基金(No.U1864212)。
关键词 微通道 大温差 超临界 低温流体 换热器 microchannel large temperature difference supercritical cryogenic fluid heat exchanger
  • 相关文献

参考文献3

二级参考文献54

  • 1TUCKERMAN D B,PEASE R F W.Hign-performance heat sinking for VLSI[J].IEEE Electron Device Letters,1981,2(5):126-129.
  • 2RAVIGURURAJAN T S,CUTA J,MCDONALD C E,et al.Single-phase flow thermal performance characteristics of a parallel micro-channel heat exchanger[C]∥ Proc of the ASME National Heat Transfer Division.New York:ASME,1996,7:157-166.
  • 3RAHMAN M M,GUI F.Expermental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate[C]∥ ASME EEP:Adv Electron Packaging.New York:ASME,1993:495-506.
  • 4HARM T M,KAZMIEREZAK M J,CERNER F M,et al.Experimental investigation of heat transfer and pressure drop through deep <100> silicon substrate[C]∥ Proc of the ASME Heat Transfer Division.New York:ASME,1997:347-357.
  • 5PFAHLER J,HARLAY J,BAU H.Gas and liquid flow in small channels in microtubes[C]∥ ASME DSC:Microstructures,Sensors and Actuators.New York:ASME,1991,32:123-134.
  • 6HARMS T M,KAZMIERCZAK M J,GERNER F M.Developing convective heat transfer in deep rectangular microchannels[J].Int J Heat and Fluid Flow,1999,20:149-157.
  • 7WeUsandt S, Vamling L. Evaporation of R134a in a hori- zontal herringbone microfin tube: heat transfer and pressure drop[ J ]. International Journal of Refrigeration, 2005, 28 (6) : 889-900.
  • 8Wellsandt S, Varrding L. Evaporation of R407C and R410A in a horizontal herringbone mierofin tube: heat transfer and pressure drop [ J ]. International Journal of Re- frigeration, 2005, 28(6): 901-911.
  • 9Koyama S, Yu J, Momoki S, et al. Forced convective flow boiling heat transfer of pure refrigerants inside a horizontal mierofin tube [ C ]//Proceedings of the Convective Flow Boiling. Alberta: Taylor-Francis, 1995 : 137-142.
  • 10Thome J R, Kattan N, Favrat D. Evaporation in microfin tubes: a generalized prediction model [ C ]//Proceedings of the Convective Flow and Pool Boiling Conference. Irsee, Germany:Taylor & Francis Ltd, Kloster lrsee, 1997.

共引文献43

同被引文献6

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部