摘要
传统天线选择算法过于依赖信道状态信息(CSI),然而以用户为中心的大规模多输入多输出(UC-MMIMO)系统难以获得足够CSI。针对以上矛盾,将强化学习方法引入到天线选择的问题中,提出了一种基于强化学习的天线选择算法。通过仿真说明所提算法相对于传统的天线选择方法对CSI依赖程度大大降低,并且有着更低的算法复杂度。
Traditional antenna selection algorithms rely too much on channel state information(CSI),but user-centric massive multiple-input multiple-output(UC-MMIMO)systems are diffi-cult to obtain sufficient CSI.In view of the above contradictions,the reinforcement learning method is introduced into the problem of antenna selection,and an antenna selection algorithm based on re-inforcement learning is proposed.Simulation results show that the proposed algorithm greatly re-duces the dependence on CSI compared with the traditional antenna selection methods,and has a lower algorithm complexity.
作者
柴新新
刘建
CHAI Xin-xin;LIU Jian(The 8th Research Academy of CSSC,Yangzhou 225101,China)
出处
《舰船电子对抗》
2022年第1期85-90,共6页
Shipboard Electronic Countermeasure
关键词
多输入多输出系统
天线选择
强化学习
算法复杂度
multiple-input multiple-output system
antenna selection
reinforcement learning
algo-rithm complexity