期刊文献+

旋转的Rayleigh-Bénard问题Lorenz模型的动力学行为及数值仿真

Dynamic behavior and numerical simulation of Lorenz model for rotating rayleigh-bénard problem
下载PDF
导出
摘要 基于旋转的Rayleigh-Bénard问题的四维Lorenz方程,探讨了该系统的动力学行为及其数值仿真问题。在文献中线性稳定性分析和局部稳定性分析的基础上,讨论了该系统的全局稳定性。首先借助Young和Gronwall不等式对系统的全局吸引子存在性进行证明,再构造李雅普诺夫函数进行全局稳定性的证明。通过最大李雅普诺夫指数和分岔图观察系统的动力学行为,借助7种混沌指标对系统的动力学行为进行分析。通过对系统的全局稳定性分析可知系统的全局吸引子存在,系统是全局稳定的。通过数值仿真可知,系统的分岔过程和最大李雅普诺夫指数图像相一致;而且随着参量r值的增大,系统是趋于稳定的。 Based on the four-dimensional Lorenz equation of rotating rayleigh-bénard,the dynamic behavior and numerical simulation of the system are discussed.Based on the linear stability analysis and local stability analysis in the literature,the global stability of the system is discussed.For the global stability analysis of the system,firstly,the existence of the global attractor of the system is proved by means of Young inequality and Gronwall inequality,and then the Lyapunov function is constructed to prove the global stability.The dynamic behavior of the system is observed through the maximum Lyapunov exponent and bifurcation diagram,and the dynamic behavior of the system is analyzed with the help of seven chaotic indexes.Through the analysis of the global stability of the system,it is known that the global attractor of the system exists and the system is globally stable.The numerical simulation shows that the bifurcation process of the system is consistent with the maximum Lyapunov exponent image.Moreover,with the increase of parameter value,the system tends to be stable.
作者 王贺元 陈相霆 WANG Heyuan;CHEN Xiangting(College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)
出处 《沈阳师范大学学报(自然科学版)》 CAS 2021年第6期557-560,共4页 Journal of Shenyang Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11572146)。
关键词 LORENZ方程 GRONWALL不等式 李雅普诺夫函数 混沌系统 Lorenz equation Gronwall inequality Lyapunov function chaotic system
  • 相关文献

参考文献7

二级参考文献24

  • 1Lorenz E N.Deterministic nonpefiedic flow[J].Journal of the Atmospheric Sciences,1963,20:130-141.
  • 2Roy D.Musielak Z E,Generalized Lorenz models and their routes to chaos.I.Energy-conserving vertical mode truncations[J].Chaos,Solitons and Fractals,2007,32:1038-1052.
  • 3Bhattacharjee J K,McKane A J.Lorenz model for the rotating Rayleigh-Bénard problem[J].J Phys A:Math Gen,1988,21:555-558.
  • 4Xu L X.On the nonlinear stability of some hydrodynamic problems[D].Bayreuth:Department of Mathematics and Physics,Bayreuth University,1997:3-17.
  • 5E N Lorenz. The Local Structure of a Chaotic Attractor in Four Dimensions[J]. Physica D, 1984, 13: 90-104.
  • 6Edward N, Lorenz. Deterministic Nonperiodic Flow, Journal of the atmospheric sciences[J]. Iss, 1962, 20: 130-141.
  • 7Irene M, Moroz. The Extended Malkus-Robbins Dynamo as a Perturbed Lorenz system[J]. Nohlinear Dynamics, 2004, 41: 24-29.
  • 8鞠春贤,王贺元.浅析Lorenz方程[J].辽宁工学院学报,2007,27(5):337-341. 被引量:6
  • 9李开泰,马逸尘.数理方程HILBERT空间方法[M]西安交通大学出版社,1990.
  • 10Valter Franceschini,Claudio Tebaldi. Breaking and disappearance of tori[J] 1984,Communications in Mathematical Physics(3):317~329

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部