期刊文献+

基于累积损伤的渗碳齿轮钢疲劳寿命预测模型构建 被引量:1

Fatiguelife prediction model of carburized gear steel based on cumulative damage
下载PDF
导出
摘要 采用轴向高频疲劳试验机进行超高周疲劳实验,研究了不同应力比(R=0和R=0.3)下渗碳齿轮钢疲劳特性。结果表明:在应力比为0和0.3时,渗碳齿轮钢的失效形式分为表面失效和内部失效。内部失效过程分为疲劳裂纹萌生阶段(夹杂-细颗粒区(fine granular area,FGA))、稳定扩展阶段(FGA-鱼眼)和瞬间断裂(鱼眼之外)。基于累积损伤法,建立了内部裂纹萌生和扩展阶段的疲劳寿命预测模型;最终建立了渗碳齿轮钢多应力比下的全寿命预测模型,预测精度较高。 Very high cycle fatigue tests were carried out on the axial high-frequency fatigue testing machine.The fatigue characteristics of carburized gear steel under different stress ratios(R=0 and R=0.3)were studied.The results show that when the stress ratio is 0 and 0.3,the failure modes of carburized gear steel are divided into surface failure and interior failure.The interior failure process is divided into fatigue crack initiation stage(from inclusion to fine granular area(FGA)),stable propagation stage(from FGA to fisheye)and instantaneous fracture(outside fisheye).Based on the cumulative damage method,the life prediction models of interior crack initiation and propagation stages are established,respectively.Finally,the fatigue life prediction model of carburized gear steel is established,prediction accuracy is higher.
作者 邓海龙 刘兵 郭扬 康贺铭 李明凯 李永平 DENG Hailong;LIU Bing;GUO Yang;KANG Heming;LI Mingkai;LI Yongping(School of Mechanical Engineering,Inner Mongolia University of Technology,Hohhot 010051,CHN;Inner Mongolia Key Laboratory of Advanced Manufacturing Technology,Hohhot 010051,CHN)
出处 《制造技术与机床》 北大核心 2022年第3期144-149,共6页 Manufacturing Technology & Machine Tool
基金 内蒙古自治区自然科学基金(2018BS05005) 内蒙古高等教育研究项目(NJZY21306) 内蒙古自治区其他厅局项目(2018NMKJ11) 内蒙古工业大学科学研究项目(ZZ201801,ZY202005)。
关键词 渗碳齿轮钢 裂纹尺寸 残余应力 萌生-扩展 寿命预测 carburized gear steel crack size residual stress initiation-propagation life prediction
  • 相关文献

参考文献5

二级参考文献55

  • 1赵永庆,刘军林,周廉.典型β型钛合金元素Cu,Fe和Cr的偏析规律[J].稀有金属材料与工程,2005,34(4):531-538. 被引量:33
  • 2俞汉清,曾卫东,胡鲜红,周义刚,孙郧立.钛合金中的β斑点及其研究方法[J].稀有金属材料与工程,1995,24(5):23-27. 被引量:7
  • 3辛社伟,赵永庆.关于钛合金热处理和析出相的讨论[J].金属热处理,2006,31(9):39-42. 被引量:65
  • 4Abdul-Baqi, A., Schreurs, P.J.G., Geers, M.G.D., 2005. Fatigue damage modeling in solder interconnects using a cohesive zone approach. International Journal of Solids and Structures, 42(3-4):927-942. [doi:10.1016/j. ijsolstr.2004.07.026].
  • 5Alexopoulos, N.D., Migklis, E., Stylianos, A., et al., 2013. Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading. International Journal of Fatigue, 56:95-105. [doi: 10.1016/j. ijfatigue.2013.07.009].
  • 6Avanzini, A., Donzella, G., Gallina, D., et al., 2013. Fatigue behavior and cyclic damage of peek short fiber reinforced composites. Composites Part B: Engineering, 45(1):397-406. [doi: 10.1016/j.compositesb.2012.06.008].
  • 7Ayoub, G., Abdelaziz, M.N., Zairi, F., et al., 2011. A continuum damage model for the high cycle fatigue life prediction of styrene-butadiene rubber under multiaxial loading. International Journal of Solids and Structures, 48(18):2458-2466. [doi: 10.1016/j .ijsolstr.2011.04.003].
  • 8Chamos, A.N., Charitidis, C.A., Skarmoutsou, A., et al., 2010. An investigation on the high stress sensitivity of fatigue life of rolled AZ31 magnesium alloy under constant amplitude fatigue loading. Fatigue & Fracture of Engineering Materials & Structures, 33(4):252-265. [doi: 10. 1111/j. 1460-2695.2009.01434.x].
  • 9Cusumano, J.P., Chattetjee, A., 2000. Steps towards a qualitative dynamics of damage evolution. InternationalJournal of Solids and Structures, 37(44):6397-6417. [doi: 10.1016/S0020-7683(99)00042-6].
  • 10Deng, G.J., Tu, S.T., Wang, Q.Q., et al., 2014. Small fatigue crack growth mechanisms of 304 stainless steel under different stress levels. International Journal of Fatigue, 64:14-21. [doi:10.1016/j.ijfatigue.2014.01.027].

共引文献24

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部