摘要
为解决经典均值-方差模型对收益率的假设不能完全适应于实际证券市场的问题,引入收益权重计算每个时间段收益占总时间段收益的比重。考虑模糊环境下多重摩擦因素,提出了一种可能性均值-下半方差-熵多周期投资组合优化模型。利用外点罚函数法将其转化为无约束优化问题。在标准的遗传算法中引入混沌映射改变种群提取过程,扩大种群多样性以便寻到更优个体。数值实验和仿真结果表明建立的模型是合理的,改进的算法是有效可行的。
To solve the problem that the return assumption in the classical mean-semi-variance-entropy model cannot be fully adapted to the actual stock market,return weights are introuced to calculate the proportion of the return of each time period to the total time period return.A multi-period portfolio optimization model with possibility mean-semi-variance-entropy is proposed considering the factors of multiple frictions in a fuzzy environment.Then,the model is transformed into an unconstrained optimization problem using the external penalty function method,and an improved genetic algorithm is used to solve the problem,which introduce the chaotic mapping to change the population extraction process of the standard genetic algorithm to expand the population diversity and find better individuals.Numerical experiments and simulation results show that the established model is reasonable,and the improved algorithm is effective and feasible.
作者
胡晨阳
高岳林
HU Chen-yang;GAO Yue-lin(Mathematics and the Information Science Department,North Minzu University,Yinchuan750021,Ningaxia;Ningxia Collaborative Innovation Center of Scientific Computing and Intelligent Information Processing,North Minzu University,Yinchuan750021,Ningxia)
出处
《商洛学院学报》
2022年第1期62-70,96,共10页
Journal of Shangluo University
基金
国家自然科学基金项目(11961001)
宁夏高等教育一流学科教育基金项目(NXYLXK2017B09)
北方民族大学重大专项资助项目(ZDZX201901)。
关键词
投资组合
收益权重
熵
混沌映射
遗传算法
investment portfolio
revenue weight
entropy
chaotic mapping
genetic algorithm