期刊文献+

图拉普拉斯正则化稀疏变换学习图像去噪算法 被引量:5

Image Denoising Algorithm Based on Graph Laplacian Regularized Sparse Transform Learning
下载PDF
导出
摘要 从噪声图像中恢复干净的图像是对图像进行有效处理与分析的首要前提之一,而去除噪声的同时保持图像的特征则是图像去噪的一个具有挑战性的问题。为了在去除噪声的同时尽量保持图像的局部结构特征,提出了一种基于图拉普拉斯正则化稀疏变换学习的图像去噪算法。通过引入图拉普拉斯正则化对邻域像素进行约束,可以较好地保护相邻像素之间的相关性,从而增强图像的局部平滑性。并且,为了更好地利用图像的非局部信息,在相似图像块度量中引入优化后的稀疏编码,从而寻找到更准确的相似图像块。实验结果表明,无论是在量化指标还是视觉质量上,所提算法均能取得较好的去噪性能。 Recovering clean images from noisy images is one of the important premises for effective image processing and analysis.However,preserving the image features is a challenging problem of image denoising.In order to remove the noise and maintain the local geometry structures of the image as much as possible,an image denoising algorithm based on graph Laplacian regularized sparse transform learning is proposed in this paper.By introducing graph Laplacian regularization to constrain the neighborhood pixels,the correlation between adjacent pixels can be better protected and the local smoothness of the image can be enhanced.Moreover,in order to make better use of the non-local information of the image,the optimized sparse coding is introduced into the similarity measurement of the image blocks to find more accurate similar image blocks.Experimental results show that the proposed algorithm can achieve good denoising performance both in quantitative indicators and visual quality.
作者 钱冲 常冬霞 QIAN Chong;CHANG Dongxia(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;Institute of Information Science,Beijing Jiaotong University,Beijing 100044,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第5期232-239,共8页 Computer Engineering and Applications
基金 中央高校基本科研业务费专项资金(2018JBZ001)。
关键词 图像去噪 稀疏变换学习 图拉普拉斯正则化 局部几何结构 图像块匹配 image denoising sparse transform learning graph Laplacian regularization local geometry structures block matching
  • 相关文献

参考文献6

二级参考文献33

  • 1王正明,谢美华.偏微分方程在图像去噪中的应用[J].应用数学,2005,18(2):219-224. 被引量:17
  • 2何钰,徐青,邢帅.基于偏微分方程的去噪方法[J].测绘科学技术学报,2007,24(4):284-286. 被引量:5
  • 3MILANFAR P. A tour of modern image filtering [J]. IEEE Signal Processing Magazine, 2013, 30(1): 106-128.
  • 4TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images [C]//Proceedings of the SixthInternational Conference on Computer Vision. Bonbay: IEEE, 1998: 839-846.
  • 5BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising [C]//2005 IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition: Volume 2. [S.l.]. IEEE, 2005: 60-65.
  • 6FREEMAN W T, ADELSON E H. The Design and use of steerable filters [J]. IEEE Transactions on PatternAnalysis & Machine Intelligence, 1991, 13(9): 891-906.
  • 7CANDES E J, DONOHO D L. Recovering edges in Ill-posed inverse problems: optimality of curvelet frames [J].Annals of Statistics, 2000, 30(3): 784-842.
  • 8OLSHAUSER B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse codefor natural images [J]. Nature, 1996,381(6583): 607-609.
  • 9HU Wei, LI Xin, CHEUNG G, et al. Depth map denoising using graph-based transform and group sparsity[C]//Multimedia Signal Processing, 2013 IEEE 15th International Workshop on. Pula: IEEE, 2013: 1-6.
  • 10ZHENG Miao, BU Jiajun, CHEN Chun, et al. Graph regularized sparse coding for image representation [J].IEEE Transactions on Image Processing, 2011, 20(5): 1327-1336.

共引文献44

同被引文献28

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部