摘要
局部恢复(LRC)码是一类线性码,当码字中某个分量的值丢失时,可通过访问该码字中其他少数(至多r个)分量来恢复。首先在有限域F_(27)上分别运用加法子群和乘法子群作陪集的方法构造LRC码,并且得出这些LRC码是最优的;进一步推广到特征为3的一般有限域F_(3l)上来构造一簇最优LRC码。最后,将构造的这些码与同类最新成果的LRC码的局部恢复性进行比较,结果表明,构造的LRC码具有更好的局部恢复性。
Local recovery codes(LRC)are a class of linear codes.When the value of a component in the codeword is lost,it can be recovered by accessing a few(at most r)other components in the codeword.In this paper,we first construct LRC codes by using additive subgroups and multiplication subgroups as cosets on finite field F_(27),and obtain that these LRC codes are optimal;Furthermore,we generalize to construct a cluster of optimal LRC codes for a general finite field F_(3l) with characteristic 3.Finally,the local resilience of these codes is compared with the latest LRC codes of the same kind.The results show that the constructed LRC codes have better local resilience.
作者
陈晓辉
胡万宝
CHEN Xiao-hui;HU Wan-bao(School of Mathematics and Physics,Anqing Normal University,Anqing Anhui 246133)
出处
《巢湖学院学报》
2021年第6期72-75,84,共5页
Journal of Chaohu University
关键词
有限域
局部恢复码
特征
finite field
local recovery code
characteristic