期刊文献+

液体火箭发动机的分层贝叶斯变分推理故障诊断方法 被引量:1

Fault Diagnosis of Liquid Rocket Engine Based on Hierarchical Bayesian Network Variational Inference
下载PDF
导出
摘要 针对稀疏数据场景下,传统的多项式-狄利克雷模型存在一定的分类精度问题,提出一种基于变分推理的分层贝叶斯网络的参数估计方法.通过在传统的多项式-狄利克雷模型中引入超先验,构建出的分层多项式-狄利克雷模型可用于贝叶斯网络中的条件分布估计.对分层多项式-狄利克雷模型的先验依赖结构进行分析研究,提出一种快速准确的自组织变分推理算法.与传统的分类模型相比,本文提出的分层多项式-狄利克雷模型在处理小数据集液体火箭发动机的故障分类中有显著的性能提高. In order to improve classification accuracy of traditional multinomial-Dirichlet model in sparse data scenario,a hierarchical Bayesian network parameter estimation method was proposed based on variational inference.Introducing a hyper-prior into the traditional multinomial-Dirichlet model,the hierarchical multinomial-Dirichlet model was constructed to estimate the conditional distribution in Bayesian networks.Analyzing the prior dependency structure of hierarchical multinomial-Dirichlet model,a fast and accurate self-organizing variational reasoning algorithm was developed.Compared with the traditional classification model,the hierarchical multinomial-Dirichlet model proposed in this paper shows a significant performance improvement in dealing with the fault classification problem of liquid rocket engines with small data sets.
作者 刘久富 丁晓彬 汪恒宇 王彪 刘海阳 杨忠 王志胜 LIU Jiufu;DING Xiaobin;WANG Hengyu;WANG Biao;LIU Haiyang;YANG Zhong;WANG Zhisheng(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,Jiangsu 211106,China;School of Electronic Science and Engineering,Southeast University,Nanjing,Jiangsu 211189,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2022年第3期289-296,共8页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61473144)。
关键词 贝叶斯网络 液体火箭发动机 分层多项式-狄利克雷模型 变分推理算法 Bayesian network liquid rocket engine hierarchical multinomial-Dirichlet model variational inference algorithm
  • 相关文献

参考文献4

二级参考文献56

  • 1柴慧敏,王宝树.用于态势估计的一种构造贝叶斯网络参数的方法[J].计算机科学,2006,33(9):140-142. 被引量:6
  • 2Tamada Y,Imoto S,Araki H. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers[J].IEEE Trans on Computational Biology and Bioinformatics,2011,(8):683-697.
  • 3Ibrahim W,Beiu V. Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semiconductor gates[J].{H}IEEE Transactions on Reliability,2011,(3):538-550.
  • 4Lee S H,Suh H. Bayesian network-based behavior control for skilli gent robots[A].2008.2910-2917.
  • 5Infantes G,Ghallab M,Ingrand F. Learning the behavior model of a robot[J].Autonomous Robot,2011,(2):157-177.
  • 6Isozaki T. Minimum free energies with "data temperature" for parameter learning of Bayesian networks[A].2008.371-378.
  • 7Isozaki T. Learning causal Bayesian network using minimum free energy principle[J].{H}NEW GENERATION COMPUTING,2012,(1):17-52.
  • 8Niculescu R S. Exploiting parameter domain knowledge for learning in Bayesian networks[D].Pittsburgh:Carnegie Mellon University,2005.
  • 9Feelders A. A new parameter learning method for Bayesian networks with qualitative influence[A].2007.117-124.
  • 10Altendorf E,Restificar A C. Learning from sparse data by exploiting monotonicity constraints[A].2005.18-26.

共引文献19

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部