期刊文献+

Muon reconstruction with a convolutional neural network in the JUNO detector 被引量:1

原文传递
导出
摘要 Purpose The Jiangmen Underground Neutrino Observatory(JUNO)is designed to determine the neutrino mass ordering and measure neutrino oscillation parameters.A precise muon reconstruction is crucial to reduce one of the major backgrounds induced by cosmic muons.Methods This article proposes a novel muon reconstruction method based on convolutional neural network(CNN)models.In this method,the track information reconstructed by the top tracker is used for network training.The training dataset is augmented by applying a rotation to muon tracks to compensate for the limited angular coverage of the top tracker.Result The muon reconstruction with the CNN model can produce unbiased tracks with performance that spatial resolution is better than 10 cm and angular resolution is better than 0.6◦.By using a GPU-accelerated implementation,a speedup factor of 100 compared to existing CPU techniques has been demonstrated.
出处 《Radiation Detection Technology and Methods》 CSCD 2021年第3期364-372,共9页 辐射探测技术与方法(英文)
基金 Supported by Strategic Priority Research Program of Chinese Academy of Sciences(XDA10010900) NSFC(11805223).
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部