摘要
网络异常流量入侵检测系统是当今网络安全技术的重要研究领域。传统的网络异常流量监测技术要求获取大量训练样本来进行机器学习,从而提高该系统检测的准确性,但在现实的网络环境中进行大量训练数据的获取是比较困难的。由于SVM传统算法的效率和检测率还需要进一步的提升,本文在测试由传统SVM算法完成的入侵检测的基础上,进一步寻找优化SVM算法的方法进行网络流量异常检测。本研究采用的优化方法是将选取的异常检测的特征参数进行进一步的选择,在处理参数的时候使用到了网格搜索与交叉验证相结合的方法,使得检测成功率有了明显的提升。
出处
《网络安全技术与应用》
2022年第2期35-37,共3页
Network Security Technology & Application