期刊文献+

基于社交网络的公共交通信息交互设计研究 被引量:1

RESEARCH ON PUBLIC TRANSPORTATION INFORMATION INTERACTIVE DESIGN BASED ON SOCIAL NETWORK
下载PDF
导出
摘要 通过公民参与来获取及时可靠的公共交通信息传递,在城市公共交通资源共享化的基础上进一步实现公共交通数据共享化。分析了公民参与带来的开放式信息创新,将基于位置的在线社交网络信息交换模型应用在公交巴士信息交互设计中进行评估与验证。得到公交巴士信息交互模型。通过可视化交互式系统来促进乘客之间的协作,建立快速的城市交通信息共享,并改善乘客在城市地区的乘车体验。该方法为智慧城市的建设中改善公共交通系统提供了新的思考模式。 Through citizen participation to obtain timely and reliable public transport information transmission,to further realize the sharing of public transport data on the basis of the sharing of urban public transport resources.The advantages of open information innovation brought by citizen participation were analyzed and the location-based online social network information exchange model was applied to evaluate and verify the interactive design of public bus transport.The bus information interaction model is obtained by visual interactive system.It promotes collaboration among users,establishes rapid sharing of urban transportation information,and improves the passenger ride experience in urban areas.This method provides a new mode of thinking for improving the public transportation system in the construction of smart cities.
作者 周扬 ZHOU YANG
出处 《设计》 2022年第1期52-55,共4页 Design
关键词 公共交通 社交网络 公民参与 公交巴士 交互设计 Public transportation The Social Network Civic participation Bus Interactive system
  • 相关文献

参考文献5

二级参考文献84

  • 1王静,杨屹,傅灵菲,顾沈兵.计划行为理论概述[J].健康教育与健康促进,2011,6(4):290-291. 被引量:51
  • 2Cranshaw J, Toch E, Hong J, et al. Bridging the gap between physical location and online social networks// Proceedings of the 12th ACM International Conference on Ubiquitous Computing ( UbiComp 2010 ). Copenhagen, Denmark, 2010:119-128.
  • 3Yadav M S, Valck K D, Hennig-Thurau T, Hoffman D L. Social commerce: A contingency frameworks for assessing marketing potential. Journal of Interactive Marketing, 2013, 27(4) : 311-323.
  • 4Sarwat M, Eldawy A, Mokbel M F, Riedl J. PLUTUS: Leveraging location-based social networks to recommend potential customers to venues//Proceedings of the 14th International Conference on Mobile Data Managemant (MDM 2013). Milan, Italy, 2013:26-35.
  • 5Qu Y, Zhang J. Trade area analysis using user generated mobile location data//Proceedings of the 22nd International Conference on World Wide Web (WWW 2013). Rio de Janeiro, Brazil, 2013:1053-1064.
  • 6Stewart K, Glanville J L, Bennett D A. Exploring spatiotem- poral and social network factors in community response to major flood disaster. The Professinonal Geographer, 2014, 66(3) : 421-435.
  • 7Gao H, Barbier G, Goolsby R. Harnessing the crowd sourcing power of social media for disaster relief. IEEE Intelligent Systems, 2011, 26(3): 10-14.
  • 8Bahir E, Peled A. Identifying and tracking major events using geo-social networks. Social Science Computer Review, 2013, 31(4): 458-470.
  • 9McArdle G, Lawlor A, Furey E, Pozdnoukhov A. City-scale traffic simulation from digital footprints//Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp 2012). Beijing, China, 2012:47-54.
  • 10Liang Y, CaverIee J, Cheng Z, Kameth K Y. How big is the crowd ? Event and location based population modeling in social media//Proceedings of the 24th ACM Conference on Hypertext and Social Media (HT2013). Paris, France, 2013:99-108.

共引文献73

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部