期刊文献+

基于用户相似度与信任度的虚拟学术社区中学者推荐研究 被引量:3

Scholar Recommendation in Virtual Academic Community Based on User Similarity and Trust
原文传递
导出
摘要 【目的/意义】研究从用户节点和网络全局两个视角出发,基于用户相似度与信任度对虚拟学术社区中学者进行推荐,提高学者推荐的质量。【方法/过程】首先,利用LDA主题模型挖掘学者发表的博文主题,计算博文相似度;通过学者共同好友比例计算好友相似度;然后将博文相似度和好友相似度融合计算用户相似度;最后,融合用户相似度和信任度进行学者推荐。【结果/结论】提出虚拟学术社区中基于用户相似度与信任度的学者推荐方法,综合利用用户节点和网络全局信息,为虚拟学术社区用户进行学者推荐。【创新/局限】从用户节点和网络全局两个角度进行学者信息融合,有效提高了虚拟学术社区中学者推荐的质量。局限在于本文主要考虑的是学者在网络全局中的信任度,用户节点间的交互信任关系还有待进一步研究。 【Purpose/significance】From the perspective of user nodes and the overall network,the study makes recommendations to scholars in virtual academic communities based on the user similarity and trust,which improves the quality of scholar recommendations.【Method/process】Firstly,LDA topic model is used to mine the blog topics published by scholars and calculate the similarity of blog posts.The similarity degree of friends is calculated by the ratio of common friends of scholars.Then the similarity of the blog and the similarity of the friends are combined to calculate the user similarity.Finally,we integrate user similarity and trust to implement scholar recommendation.【Result/conclusion】This paper proposes a scholar recommendation method based on user similarity and trust in virtual academic community,which makes comprehensive use of user nodes and network global information to recommend scholars for users in virtual academic community.【Innovation/limitation】The fusion of scholars’ information from two perspectives of user nodes and network overall improves the quality of scholars recommended in the virtual academic community.The limitation is that this paper mainly considers the trust degree of scholars in the whole network,and the mutual trust relationship between user nodes needs to be further studied.
作者 熊回香 顾佳云 代沁泉 杜瑾 XIONG Hui-xiang;GU Jia-yun;DAI Qin-quan;DU Jin(School of Information Management,Central China Normal University,Wuhan 430079,China)
出处 《情报科学》 CSSCI 北大核心 2022年第2期74-81,共8页 Information Science
基金 国家社会科学基金年度项目“融合知识图谱和深度学习的在线学术资源挖掘与推荐研究”(19BTQ005)。
关键词 虚拟学术社区 学者推荐 LDA主题模型 信任度 用户相似度 virtual academic community scholar recommendation LDA topic model trust user similarity
  • 相关文献

参考文献11

二级参考文献140

  • 1杨晶,杨长春,丁虹.一种改进的新浪微博好友推荐算法[J].常州大学学报(自然科学版),2013,25(3):66-70. 被引量:3
  • 2钟守真.论比较图书馆学跨学科研究模式[J].图书与情报,1993(4):71-80. 被引量:6
  • 3姜继.中国图书馆学的跨学科研究[J].中国图书馆学报,1995,21(6):18-24. 被引量:23
  • 4米哈伊洛夫.科学交流与情报学[M].徐新民,译.北京:科学技术出版社.1980.
  • 5陈文勇.情报学:学科还是领域[J].情报科学,2007,25(8):1135-1140. 被引量:8
  • 6tIUANG J, ZHUANG Z, I,I J, et al. Collaboration owr lime: characterizing and modeling network evolution [ C ]// Proceedings of tile International Conference on Web Search and Weir Data Mining. Palo Alto, USA, 2008: 107-116.
  • 7WANG Chong, BI,EI I) M. Collaborative topic' modeling for recommending scienlific articles [ C]//Proceedings of the 17th ACM S1GKDD International Conference on Knowledge Discovetw and Data Mining. New York, USA, 2011 : 448- 456.
  • 8CHEN H H, GOU l,iang, ZttANG Xiaolong, et al. Collah- seer: a search engine for collaboration discovel7 [ C ]//Pn - ceedings of JCD1.. Ottawa, Canada, 2011: 231-240.
  • 9H1RSCH J E. An index to quantify an individual's scientificresearch output [ J ]. The National Academy of Sciences of the USA, 2005, 102(46) : 16569-16572.
  • 10POPOV S B. A parameter to quantify dynamics of a researc- her' s scientific activity[ EB/OL]. [201 1-11-O3 ]. http:// arxiv, org/abs/physies/0508113.

共引文献154

同被引文献50

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部