期刊文献+

自适应快速弱敏无迹Kalman滤波算法 被引量:2

Adaptive fast desensitized unscented Kalman filter algorithm
原文传递
导出
摘要 针对现有弱敏无迹Kalman滤波需要代数求解增益矩阵耗时长和不能实时调节敏感性权重的问题,提出一种自适应快速弱敏无迹Kalman滤波算法.该算法在弱敏控制技术的基础上,重新定义弱敏无迹Kalman滤波的敏感性权重矩阵,将状态估计误差对不确定参数的敏感性加入滤波的代价函数,并通过最小化该代价函数得到滤波增益矩阵的解析解,减少了滤波计算复杂度和计算时间.同时基于量测残差正交原理,设计敏感性权重的自适应渐消因子,实现滤波过程中敏感性权重的实时调节.典型算例的数值仿真结果表明:所提出的自适应快速弱敏无迹Kalman滤波算法能够提高计算效率和实时调节敏感性权重,有效地降低不确定参数对状态估计的不利影响;相较于传统的弱敏无迹Kalman滤波算法,所提出算法的状态估计误差和计算时间分别减少19.5%和99.9%. Aiming at the problem that the existing desensitized unscented Kalman filter takes a large amount computational time to algebraically solve the gain matrix and the sensitivity weights cannot be adjusted in real-time,an adaptive fast desensitized unscented Kalman filtering algorithm is proposed.Based on the desensitized control technology,the algorithm redefines the sensitivity weight matrix of the desensitized unscented Kalman filter,and the sensitivity of the state estimation error for uncertain parameters is introduced to the cost function of the filter.The analytical solution of the filter gain matrix is obtained by minimizing the cost function,which reduces the computational complexity and time of the filter.At the same time,based on the orthogonal principle of measurement residuals,the adaptive fading factor of sensitivity weights is designed to realize the real-time adjustment of sensitivity weights in the filtering process.Numerical simulation results of a typical example show that the proposed adaptive fast desensitized unscented Kalman filtering algorithm can improve the computational efficiency,adjust the sensitivity weights in real-time and effectively reduce the adverse impact of uncertain parameters on state estimation.Compared with the traditional desensitized unscented Kalman filtering algorithm,the state estimation error and computational time of the proposed algorithm are reduced by 19.5%and 99.9%respectively.
作者 娄泰山 王晓乾 赵良玉 赵素娜 LOU Tai-shan;WANG Xiao-qian;ZHAO Liang-yu;ZHAO Su-na(School of Electrical and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China;School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第2期506-512,共7页 Control and Decision
基金 国家自然科学基金项目(12072027,61603346) 郑州轻工业大学博士基金项目(2018BSJJ007) 河南省高校科技创新团队项目(19IRTSTHN013)。
关键词 无迹Kalman滤波 不确定参数 自适应 敏感性权重 非线性滤波 unscented Kalman filter uncertain parameter adaptive sensitivity-weighting matrix nonlinear filter
  • 相关文献

参考文献4

二级参考文献46

  • 1傅惠民.二维单侧容限系数方法[J].航空学报,1993,14(3). 被引量:24
  • 2傅惠民.不完全数据秩分布理论[J].航空学报,1993,14(11). 被引量:27
  • 3傅惠民.连续分布百分位值和百分率的区间估计和假设检验[J].航空学报,1993,14(11). 被引量:22
  • 4周东华,控制与决策,1990年,5卷,1页
  • 5刘伟,杨峰,张洪才,潘泉,梁彦.状态估计中确定性采样滤波器的比较分析[J].系统仿真学报,2007,19(18):4265-4269. 被引量:5
  • 6Benkouider A M, Buvat J C, Cosmao J M. , et al. Fault detection in semi-batch reactor using the EKF and statistical method[J]. Jourrlal of loss Prevention in the Process Industries, 2009, 22(2) : 153 - 161.
  • 7Benkouider A M, Kessas R, Yahiaoui A, et al. A hybrid approach to faults detection and diagnosis in batch and semi batch reactors by using EKF and neural network elassifier[J]. Journal of Loss Pre- vention in the Process Industries, 2012, 25(4): 694- 702.
  • 8Simon J J, Jeffrey K U. A new extension of the Kalman filter to nonlinear systems[C]//Proc, of the l lth International Sympo slum on Aerospace/ Defense Sensing, Simulation and Controls, 1997: 54-65.
  • 9Girish C, Ravindra J. Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter[J]. Aerospace Science and Technology, 2010, 14(2): 106-117.
  • 10Karami F, Poshtan J, Poshtan M. Detection of broken rotor bars in induction motors using nonlinear Kalman filters[J]. ISA Transactions, 2010, 49(2) : 189 - 195.

共引文献216

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部