期刊文献+

时序知识图谱的增量构建 被引量:4

Incremental Construction of Time-Series Knowledge Graph
下载PDF
导出
摘要 带有时序特征的知识图谱(KG)称为时序知识图谱,用来描述知识库中增量式的概念及其相互关系。知识随着时间推移而变化,将新增知识实时、准确地添加到时序知识图谱中,可以实时反映知识的演化更新。对此,给出时序知识图谱的定义,并基于TransH提出一种时序知识图谱的增量构建方法。为了将新增且相关的三元组准确地添加到当前知识图谱中,提出了三元组与当前知识图谱之间吻合度的计算模型,以及基于贪心思想的待添加到知识图谱中的最优三元组子集提取算法,进而将最优的三元组集合添加到当前知识图谱中,完成时序知识图谱的增量更新。实验结果表明,提出的增量构建方法能够快速地提取出最优三元组并有效地添加到知识图谱中,验证了方法的高效性和有效性。 Knowledge graph(KG)with time-series feature is referred to as time-series KG,which depicts the incremental concepts and corresponding relations in knowledge base.In view of knowledge being dramatically changing,by adding new knowledge to time-series KG,the evolution and update of knowledge can be reflected in time.Thus,this paper gives the definition of time-series KG and proposes the method for its incremental construction model based on TransH.In order to add new and relevant triple set to time-series KG,this paper proposes a model for calculating the coincidence between the triple and the current KG,and the technique for extracting the optimal triples by the idea of greedy algorithm.Then,the optimal set of triples is added to the time-series KG and the incremental update is fulfilled.Experimental results show that optimal triples can be extracted efficiently and added into the time-series KG by the proposed method.The effectiveness and efficiency of the method are verified.
作者 张子辰 岳昆 祁志卫 段亮 ZHANG Zichen;YUE Kun;QI Zhiwei;DUAN Liang(School of Information Science&Engineering,Yunnan University,Kunming 650500,China)
出处 《计算机科学与探索》 CSCD 北大核心 2022年第3期598-607,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金云南联合基金(U1802271) 国家自然科学基金(62002311) 云南省基础研究计划杰出青年项目(2019FJ011) 云南省万人计划“青年拔尖人才”计划(C6193032) 云南大学“东陆学者”支持计划:中国博士后科学基金(2020M673310)。
关键词 时序知识图谱 吻合度 增量构建 贪心算法 time-series knowledge graph coincidence incremental construction greedy algorithm
  • 相关文献

参考文献5

二级参考文献99

  • 1刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 2Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 3Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 4Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 5Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 6Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 7Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 8Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.
  • 9Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119.
  • 10Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202.

共引文献1213

同被引文献30

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部