期刊文献+

基于卷积神经网络结合极限学习机的办公垃圾图像分类

Office Garbage Image Classification Based on Convolutional Neural Networks Combined with Extreme Learning Machine
下载PDF
导出
摘要 目前,基于神经网络的垃圾分类方法大多利用迁移学习获得较好的性能,然而这些方法存在训练时间长、泛化能力有限的问题。针对上述问题,本文提出一种经典网络结合极限学习机的级联网络模型应用于垃圾分类。首先,分别采用VGG19、ResNet18网络的卷积部分作为主干网络提取垃圾图片特征;其次,使用极限学习机作为分类器进行垃圾分类;最后,进行了极限学习机隐含层结点个数选择和全连接层保留与否的实验。实验结果表明,在大类的办公垃圾分类中,级联网络的训练时间和泛化能力明显优于迁移学习,同时当经典网络去除全连接层后,再结合级联网络分类可以获得更好的分类性能。 At present,most of the garbage classification methods based on neural network use transfer learning to obtain better performance.However,these methods have the problems of long training time and limited generalization ability.To solve the above problems,this paper proposes a cascade network model of classical network combined with limit learning machine,which is applied to garbage classification.Firstly,the convolution part of vgg19 and resnet18 networks are used as the backbone network to extract the characteristics of spam images;Secondly,limit learning machine is used as a classifier to classify garbage;Finally,experiments are carried out to select the number of hidden layer nodes and whether the full connection layer is retained or not.The experimental results show that the training time and generalization ability of cascaded network are significantly better than that of transfer learning.At the same time,when the classical network removes the full connection layer,combined with cascaded network classification,better classification performance can be obtained.
作者 赵娜 秦琴 马振宇 白建峰 ZHAO Na;QIN Qin;MA Zhenyu;BAI Jianfeng(School of Resource and Environmental Engineering,Shanghai Polytechnic University,Shanghai 201209,China;University of Birmingham,Birmingham 999020,UK;Institude of Resource Recycling Science and Engineering,Shanghai Polytechnic University,Shanghai 201209,China;Science and Engineering Research Center of Electrical Solid Waste Recycling and Utilization,Shanghai Polytechnic University,Shanghai 201209,China)
出处 《信息与电脑》 2021年第24期73-76,80,共5页 Information & Computer
基金 国家重点研发计划项目—社区垃圾源头智能分类与清洁收集技术及装备(2019YFC1906100) 上海智能制造协同物流装备工程技术研究中心(项目编号:A10GY21H004-18)。
关键词 垃圾分类 迁移学习 极限学习机 卷积神经网络 隐含层结点数 garbage classification transfer learning extreme learning machine convolutional neural networks number of nodes in hidden layer
  • 相关文献

参考文献3

二级参考文献25

  • 1Mitchell T M. 机器学习(英文影印版)[M]. 北京: 机械工业出版社, 2003.
  • 2Kumar S. 神经网络(英文影印版)[M]. 北京: 清华大学出版社, 2006.
  • 3Huang Guangbin, Zhu Qinyu, Siew C H. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
  • 4Wang Yuguang, Cao Feilong, Yuan Yubo. A Study on Effectiveness of Extreme Learning Machine[J]. Neurocomputing, 2011, 74(16): 2483-2490.
  • 5José M M, Pablo E M, Emilio S O, et al. Regularized Extreme Learning Machine for Regression Problems[J]. Neurocomputing, 2011, 74(17): 3716-3721.
  • 6Emilio S O, Juan G S, Martín J D, et al. BELM: Bayesian Extreme Learning Machine[J]. IEEE Transactions on Neural Networks, 2011, 22(3): 505-509.
  • 7Mohammed A A, Minhas R, Jonathan Q M, et al. Human Face Recognition Based on Multidimensional PCA and Extreme Learning Machine[J]. Pattern Recognition, 2011, 44(10/11): 2588- 2597.
  • 8Huang Guangbin, Wang Dianhui, Lan Yuan. Extreme Learning Machines: A Survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.
  • 9Huang Guangbin, Chen Lei, Siew C H. Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892.
  • 10Feng Guorui, Huang Guangbin, Lin Qingping, et al. Error Minimized Extreme Learning Machine with Growth of Hidden Nodes and Incremental Learning[J]. IEEE Transactions on Neural Networks, 2009, 20(8): 1352-1357.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部