期刊文献+

基于ZYNQ深度学习模型部署的锂电池健康预测

Lithium-ion Battery Health Prognostic Based on a ZYNQ Deep Learning Model
下载PDF
导出
摘要 为实现低成本、快速、高精度的电动汽车锂电池健康预测,提出一套基于深度学习模型和ZYNQ硬件平台的锂电池健康预测系统。首先,使用锂电池历史退化数据训练多层卷积神经网络模型,得到模型各层的权重;其次,采用动态精度数据量化策略对各层的模型参数进行量化,有效减少内存占用和带宽需求,进而提升硬件加速器的性能;然后,利用高层次综合工具实现了模型参数在ZYNQ硬件平台的嵌入和部署;最后,整套系统在Xilinx XC7020平台上进行验证。实验结果表明,该系统在实现高精度预测的同时,能够有效降低功耗、降低时延,满足车载条件下锂电池健康管理系统的嵌入式应用需求。 In order to realize low-cost, fast and high-precision health prognostics of lithium-ion batteries for electric vehicles, a system for lithium-ion battery health prognostic based on a deep learning model and a ZYNQ hardware platform is proposed in this paper. Firstly, a multi-layer convolutional neural network model is pretrained by using the historical degradation data of lithium-ion batteries, and the model weights in each layer are preserved. Secondly, the model weights are quantified by using a dynamic precision data quantization strategy,which can effectively reduce the memory consumption and bandwidth requirements, and improve the performance of the hardware accelerator. Thirdly, the quantified model weights are embedded and deployed into a ZYNQ hardware platform by using the high-level synthesis tool. Finally, the whole system is validated on the Xilinx XC7020 platform. The experimental results reveal that the proposed system can effectively reduce power consumption and time delay while achieving a high precision prognostic, and meet the requirements of embedded applications for lithium-ion battery health management system in electric vehicles.
作者 马贵君 冉少林 张泽 MA Gui-jun;RAN Shao-lin;ZHANG Ze(School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China;Amazon,Seattle 98121,USA)
出处 《控制工程》 CSCD 北大核心 2022年第2期294-299,共6页 Control Engineering of China
基金 国家重点研发计划资助项目(2018YFB1701202) 湖北省自然科学基金资助项目(2019CFA005)。
关键词 锂电池 健康预测 深度学习模型 ZYNQ硬件平台 Lithium-ion battery health prognostic deep learning model ZYNQ hardware platform
  • 相关文献

参考文献3

二级参考文献11

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部