期刊文献+

基于SVM和背景模型的显著性目标检测算法 被引量:2

Salient object detection algorithm based on SVM and background model
下载PDF
导出
摘要 针对显著性目标多样性和不确定性,机器学习算法无法检测没有先验信息的图像问题,提出了一种基于图像边缘信息构建背景模型结合SVM分类算法的显著性目标检测算法。该方法对输入图像进行超像素预处理,使像素级转化为超像素级,既抑制噪声,又提高了计算效率。利用图像边缘超像素构建图像的初始背景模型,得到初始显著图。基于SVM算法建立目标和背景的分类模型,结合信息熵评价特征图,迭代优化背景模型,同时得到显著性目标。在公开数据库中进行了测试,实验结果表明,提出的检测算法能够在没有任何图像先验信息的情况下有效地检测出图像中的显著性目标,与流行的5种算法相比,该方法对检测目标的尺度和数量都具有较好的鲁棒性。 In view of the diversity and uncertainty of salient objects,machine learning algorithm can’t detect the image without prior information. A salient object detection algorithm is proposed based on the information of area around image to construct background model and SVM classification algorithm.The input image is preprocessed by superpixel segmentation algorithm,so that the pixel level is transformed into superpixel level,which not only suppresses the noise,but also improves the computational efficiency.The input image is preprocessed by superpixel segmentation algorithm,so that the pixel level is transformed into superpixel level,which not only suppresses the noise,but also improves the computational efficiency. The initial background model is constructed by using the superpixels around image edge,and the initial saliency map is obtained.The classification model of object and background is established based on SVM algorithm,and the background model is iteratively optimized by using the information entropy to evaluate feature map. And the same time,the saliency object is obtained.The proposed algorithm in a public database is tested. Experimental results have been performed to demonstrate that the algorithm can effectively detect salient objects without any prior information.Compared with the five popular algorithms,the proposed method has better robustness to the scale and number of detected objects.
作者 张艳邦 张芬 张姣姣 ZHANG Yanbang;ZHANG Fen;ZHANG Jiaojiao(School of Mathematics and Statistics,Xianyang Normal University,Xianyang 712000,China;Institute of Intelligent Information Analysis and Data Processing,Xianyang Normal University,Xianyang 712000,China)
出处 《电子设计工程》 2022年第5期17-21,27,共6页 Electronic Design Engineering
基金 国家自然科学基金(61501388) 咸阳市重点研发计划项目(S2021ZDYF-SF-0739) 陕西省教育科学“十三五”规划2017年课题(SGH17H173) 咸阳师范学院青蓝人才计划项目(XSYQL201605) 咸阳师范学院服务地方科研项目(XSYK19044) 咸阳师范学院科研平台项目(XSYK20022) 陕西省大学生创新创业训练计划资助项目(S201910722017)。
关键词 目标检测 视觉注意 SVM 背景模型 object detection visual attention SVM background mode
  • 相关文献

参考文献1

二级参考文献40

  • 1REN Xiao-fimg, MAI,IK J. Learning a classification model for seg- mentation[ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Washington DC :IEEE Computer Society ,2(X)3 : 10-17.
  • 2FEIZENSWALB P F, HUTFENLOCHER D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2):167-181.
  • 3SHI Jian-bo, MALIK J. Normalized cuts and image segmentation [C]//Proc of IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. Washingtan DC:IEEE Camputer Socie- ty, 1997:731-737.
  • 4SHI Jian-bo, MAL1K J. Normalized cuts and image segmentation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905.
  • 5MOORE A, PRINCE S, WARRELI. J, et al. Superpixel lattices [ C]//Proc of IEEE Conference on Computer Vision and Pattern Rec- ognition. 2008 : 1-8.
  • 6LIU Ming-yu, TUZEL O, RAMALINGAM S,et al. Entropy rate su- perpixel segmentation [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2011:2097-2104.
  • 7VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algoritlml based on inlmeision simulations[ J]. IEEE Trans on Pat- tern Analysis and Machine Intelligence, 1991, 13 (6) : 583-598.
  • 8COMANICIU D, MEER P. Mean shift: a rnhust approrah toward fea- ture space analysis[ J ]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence, 2002, 24(5): 603-619.
  • 9VEDALDI A, SOATTO S. Quick shift and kernel methods for mode seeking [ M ]//Computer Vision. Berlin: Springer-Verlag, 2008: 705-718.
  • 10LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. Turbotfi- xels: fast superpixels using geometric flows [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 (12): 2290- 2297.

共引文献115

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部