期刊文献+

Surface and Interface Engineering for Advanced Nanofiltration Membranes 被引量:1

原文传递
导出
摘要 Nanofiltration has been attracting great attention in alleviating the global water crisis because of its high efficiency,mild operation,and strong adaptability.Over decades,it remains a challenge to break the upper limit of performance and establish the formation-structureproperty relationship for nanofiltration membranes.This feature article summarizes our recent progress in the preparation of high-performance thin-film composite(TFC)nanofiltration membranes,focusing on the mussel-inspired deposition method and the optimized interfacial polymerization(IP).By accelerating the oxidation of polydopamine and equilibrating the rate of aggregation and deposition processes,the mussel-inspired deposition method realizes the rapid and uniform formation of selective coatings or nanofilms.Diverse deposition systems endow the selective layer with rich chemical structures and easy post-functionalization,highlighting its potential in water treatment.As for optimizing the conventional IP,the rapid polycondensation of amine and acid chloride groups is slowed down to enable the controllability of IP at the water-organic interface.The homogeneity and integrity of the TFC membranes are improved by constructing a uniform reaction platform and introducing a viscous medium to control the amine diffusion,which facilitates the water permeability and promotes the separation efficiency.We have proposed a series of practical strategies for improving TFC membranes and might provide more inspiration for other nanofiltration techniques.
机构地区 Ministry of Education
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第2期124-137,共14页 高分子科学(英文版)
基金 financially supported by the National Natural Science Foundation of China(No.22135006)。
  • 相关文献

参考文献3

二级参考文献45

  • 1Kim, I.C., Lee, KH. and Tak, T.M., J. Membr. Sci., 2001, 183: 235.
  • 2Vander Bruggen, B., Geens, 1. and Vandecasteeke, C., Sep. Sci. Technol., 2002, 37: 783.
  • 3Bowen, W.R., Mohammad, A.W. and Hilal, N., 1. Membr. Sci., 1997, 126: 91.
  • 4Hayakawa, Y., Trasawa, N. and Hayashi, E., J. Appl. Polym. Sci., 1996,62: 951.
  • 5Lee, C., Low, K. and Gan, P., Environ. Technol., 1999,20: 99.
  • 6Philippe, C., Roberto, B. and Willy, V., J. Chern. Technol. Biotechnol., 1998,72: 289.
  • 7Zhao, Z.P., Li, J.D., Chen, J. and Chen, C.X., J. Membr. Sci, 2005, 251: 239.
  • 8Aerts, S., Vanhulsel, A., Buekenhoudt, A., Weyten, H. and Kuypers, S., J. Membr. Sci., 2006, 275: 212.
  • 9Buonomenna, M.G., Lopez, L.e., Davoli, M., Favia, P. and Agostino, R.D., Microporous and Mesoporous Mater., 2009, 120: 147.
  • 10Akbari, A., Desc1aux, S., Rouch, J.C. and Aptel, P., J. Membr. Sci., 2006, 286: 342.

共引文献17

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部