期刊文献+

Optimizing Photovoltaic Performance by Kinetic Quenching of Layered Heterojunctions

原文传递
导出
摘要 The mixing morphology control plays a crucial role in photovoltaic power generation,yet this specific effect on device performances remains elusive.Here,we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies.One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects.The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells.The two-step quench can provide a buffer at a lower temperature before the kinetic quenching,leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance.Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance.
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第1期29-37,共9页 高分子科学(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.21774032,51833003 and 51621002)。
  • 相关文献

参考文献1

二级参考文献2

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部