摘要
This work proposes a facile fabrication strategy for thermally conductive graphite nanosheets/poly(lactic acid) sheets with ordered GNPs(o-GNPs/PLA) via fused deposition modeling(FDM) 3 D printing technology.Further combinations of o-GNPs/PLA with Ti_(3) C_(2) T_(x) films prepared by vacuum-assisted filtration were carried out by "layer-by-layer stacking-hot pressing" to be the thermally conductive Ti_(3) C_(2) T_(x)/(oGNPs/PLA) composites with superior electromagnetic interference shielding effectiveness(EMI SE).When the content of GNPs was 18.60 wt%and 4 layers of Ti_(3) C_(2) T_(x)(6.98 wt%) films were embedded,the in-plane thermal conductivity coefficient(λ_(Ⅱ)) and EMI SE(EMI SE_(Ⅱ)) values of the thermally conductive Ti_(3) C_(2) T_(x)/(o-GNPs/P LA) composites significantly increa sed to 3.44 W·m^(-1)·K^(-1) and 65 d B(3.00 mm),increased by 1223.1% and2066.7%,respectively,compared with λ_(Ⅱ)(0.26 W·m^(-1)·K^(-1)) and EMI SE_(Ⅱ)(3 d B) of neat PLA matrix.This work offers a novel and easily route for designing and manufacturing highly thermally conductive polymer composites with superior EMI SE for broader application.
基金
financial support from the National Natural Science Foundation of China (Nos. 51773169 and 51973173)
Technical Basis Scientific Research Project (Highly Thermally Conductive Non-metal Materials)
Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120093)
Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No. 2019JC-11)
financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars。