期刊文献+

钯催化α,β-不饱和酰氯与炔烃合成环戊烯酮模块化策略机理的密度泛函理论计算 被引量:1

DFT mechanistic insight into the modular strategy involved in the palladium-catalyzed synthesis of cyclopentenones fromα,β-unsaturated acid chlorides and alkynes
下载PDF
导出
摘要 环戊烯酮是重要的有机合成原料,也是生物活性化合物和天然产物构建模块。采用密度泛函理论计算,本文研究以硅烷为氢源,钯催化α,β-不饱和酰氯与炔烃合成环戊烯酮的模块化策略的机理。研究表明该反应经下面过程顺序进行:钯催化剂拆分酰氯成烯基、羰基和氯单元;一氧化碳释放;炔烃与烯基偶联;一氧化碳重新配位和迁移插入形成另一个C—C键;经CC双键迁移插入关环,与氢硅烷发生转金属反应,C,H-还原消除释放产物。该机理与实验工作者提出的机理不同,羰基通过在溶剂笼中释放和重新配位参与反应,而不是一直与钯配位。转金属H/Cl交换发生在反应后期,是反应的瓶颈过程,而不是发生在前期的酰氯拆分。 Cyclopentenones are important synthetic building blocks and as motifs appear in bioactive molecules and natural products.We applied density functional theory(DFT)calculations to gain insight into the modular strategy involved in the palladium-catalyzed synthesis of cyclopentenone fromα,β-unsaturated acid chlorides and alkynes in the presence of hydrosilane.The study unveils that the transformation proceeds via the sequence:the disassembly ofα,β-unsaturated acid chloride into vinyl,carbonyl,and Cl fragments with the palladium catalyst;carbon monoxide release;coupling of alkyne with vinyl group;carbon monoxide re-coordination and migratory insertion to form another C—C bond with alkyne,ring-closure via CC bond insertion,transmetalation with hydrosilane,C,H-reductive elimination to release the product.Different from the mechanism proposed by the experimentalists,the CO group is involved in the reaction via separate liberation and re-coordination in the solvent cage,rather than persistent coordination with palladium.The transmetalation for H/Cl exchange takes place at the late stage and is a bottleneck of the transformation,instead of at early disassembly stage.
作者 钟亮 赵瑞华 汪志祥 ZHONG Liang;ZHAO Ruihua;WANG Zhixiang(School of Chemical Sciences, University of Chinese Academy of Sciences,Beijing 100049, China)
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2022年第2期145-153,共9页 Journal of University of Chinese Academy of Sciences
基金 the National Natural Science Foundation of China(21773240)。
关键词 环戊烯酮合成 模块化策略 一氧化碳替代 钯催化 密度泛函理论计算 cyclopentenone synthesis modular strategy carbon monoxide surrogates palladium catalysis DFT calculation
  • 相关文献

参考文献1

二级参考文献28

  • 1Lautens M, Klute W, Tam, W. Transition metal-mediated cycloaddition reactions [ J ]. Chem Rev, 1996, 96 ( 1 ) : 49-92.
  • 2Rubin M, Ruhina M, Gevorgyan V. Transition metal chemistry of cyclopropenes and cyclopropanes [ J ]. Chem Rev, 2007, 107(7) : 3 117-3 179.
  • 3Yeung C S, Dong V M. Catalytic dehydrogenative cross- coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds [ J ]. Chem Rev, 2011, 111 (3): 1215-1292.
  • 4Wencel D J, Glorius F. C--H bond activation enables the rapid construction and late-stage diversification of functional molecules[J]. Nat Chem, 2013, 5: 369-375.
  • 5Colby D A, Bergman R G, Ellman J A. Rhodium-catalyzed C--C bond formation via heteroatom-directed C--H bond activation[J]. Chem Rev, 2010, 110(2): 624-655.
  • 6Guimond N, Gouliaras C, Fagnou K. Rhodium (III)- catalyzed isoquinolone synthesis: the N--O bond as a handle for C--N bond formation and catalyst turnover [ J]. J Am Chem Soc, 2010, 132(20) : 6 908-6 909.
  • 7Ackermann L, Lygin A V, Hofmann N. Ruthenium-catalyzed oxidative annulation by cleavage of C--H/N--H bonds [ J ]. Angew Chem Int Ed, 2011, 50(28): 6379-6 382.
  • 8Nan J, Zuo Z, Luo L, et al. RuII-catalyzed vinylative dearomatization of naphthols via a C (sp2)--H bond activation approach[J]. J Am Chem Soc, 2013, 135(46): 17 306-17 309.
  • 9Mehta V P, Garcia J A, Greaney M F. Aromatic homologation by non-chelate-assisted RhIII-catalyzed C--H functionalization of arenes with alkynes [ J ]. Angew Chem, lnt Ed, 2014, 53(6) : 1 529-1 533.
  • 10Stuart D R, Bertrand L M, Burgess K M N, et al. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes [ J ]. J Am Chem Soc, 2008, 130(49): 16474-16475.

共引文献1

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部