期刊文献+

移动边缘计算中的在线任务卸载方法 被引量:2

Online task offloading in mobile edge computing
下载PDF
导出
摘要 为减少移动边缘计算(mobile edge computing,MEC)网络中移动用户的长期任务开销,利用强化学习的马尔科夫决策过程,将用户的移动性与系统的动态信息建模为随机优化问题。依据系统信息的状态,将问题分为系统信息已知、系统信息未知2种情况。在系统信息已知时,提供了问题的最优解;系统信息未知时,基于在线学习提出2个任务卸载策略。一个策略能够收敛到系统最优解,但收敛速度较慢;另一个策略能以更快的收敛速度,达到接近最优解的表现,可用于更复杂的系统。最后在仿真中展示算法的有效性。 To reduce the costs of task processing,task offloading is put forward as a promising technology in mobile edge computing.In this paper,in order to lessen the burden of long-term tasks of the moving user,we utilize Markov decision process to formulate the task offloading problem as a stochastic programming problem,when taking the user mobility and system dynamics into account.According to the system information state,the problem can be categorized as the one with fully known system information and the other one with limited system information.We provide the optimal and learning-based task offloading algorithms under these two kinds of systems respectively.Furthermore,two learning-based algorithms,one with optimality and another with faster convergence rate,are proposed.The performance is verified in simulations.
作者 刘婷 罗喜良 LIU Ting;LUO Xiliang(School of Information Science and Technology, ShanghaiTech University,Shanghai 201210, China;Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,Shanghai 200050, China;University of Chinese Academy of Sciences,Beijing 100049, China)
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2022年第2期267-274,共8页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金面上项目(61971286)资助。
关键词 移动边缘计算 任务卸载 在线学习 马尔科夫决策过程 mobile edge computing(MEC) task offloading online learning Markov decision process(MDP)
  • 相关文献

参考文献1

二级参考文献13

  • 1杨余旺,杨静宇,龚璐.Level Set方法求解机器人路径规划的探讨[J].中国图象图形学报,2005,10(9):1139-1145. 被引量:2
  • 2Willms A R,Yang S X. An efficient dynamic system for realtime robot-path planning[J].IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics,2006,(04):755-766.
  • 3Zhang Y,Zhang L,Zhang X H. Mobile robot path planning base on the hybrid genetic algorithm in unknown environment[A].China:Taiwan,2008.661-665.
  • 4Hassanzadeh I,Madani K,Badamchizadeh M A. Mobile robot path planning based on shuffled frog leaping optimization algorithm[A].Canada:Ontario,2010.680-685.
  • 5Guo J M,Liu L,Liu Q. An improvement of D* algorithm for mobile robot path planning in partial unknown environment[A].China:Hunan,2009.394-397.
  • 6Kimmel R,Amir A,Bruckstein A M. Finding shortest paths on surfaces using Level Sets propagation[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,(06):635-640.
  • 7Xu B,Stilwell D J,Kurdila A. Efficient computation of Level Sets for path planning[A].USA:Louis,2009.4414-4419.
  • 8Philippsen R,Siegwart R. An interpolated dynamic navigation function[A].Spain:Barcelona,2005.3782-3789.
  • 9Scheding S,Dissanayake G,Nebot E M. An experiment in autonomous navigation of an underground mining vehicle[J].{H}IEEE Transactions on Robotics and Automation,1999,(01):85-95.
  • 10Li M,Wang J,Zhu M Q. On skeleton extraction algorithm for path planning of mobile robots in complex planar maps[A].China:Beijing,2010.3704-3708.

共引文献18

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部