期刊文献+

基因表达对膀胱癌生存结局的预测:稀疏与混合Cox模型的实证比较研究

Prognostic Prediction of Bladder Cancer with Gene Expressions:An Empirical Comparison Study of Sparse and Mixed Cox Models
下载PDF
导出
摘要 目的研究稀疏Cox(coxlasso)与混合Cox模型(coxlmm)在全基因表达数据中对膀胱癌预后的预测表现。方法通过计算一致性指数(C-index)评价两种模型在膀胱癌全基因表达数据中(TCGA,GSE31684和GSE13507)的预测精度,同时在混合Cox模型中将膀胱癌的生存方差划分为临床(PCE)和转录组(PGE)两部分。结果当TCGA数据集为训练集时,coxlmm预测能力(C-index=0.676)高于coxlasso(C-index=0.655),两者在外部验证集的C-index分别为0.527和0.534。当三个合并数据集为训练集时coxlmm(C-index=0.671)比coxlasso(C-index=0.650)的预测精度提高2.1%。当GSE31684为训练集时,coxlmm(C-index=0.553)比coxlasso(C-index=0.550)的预测精度提高0.3%,两个模型在外部验证集上的C-index分别为0.632和0.633。生存方差划分表明膀胱癌的临床贡献高于转录组的贡献(PCE=14.95%,PGE=10.88%)。结论成功构建了一种用于膀胱癌的预后预测的coxlmm模型,揭示了整合全转录组信息可在一定程度上提高膀胱癌预后预测能力。 Objective To compare the predictive performance of sparse Cox model(coxlasso)and Cox linear mixed model(coxlmm)for prognosis of bladder cancer with whole gene expression profile.Methods The prediction accuracy of the two models was evaluated with bladder cancer datasets(TCGA,GSE31684 and GSE13507)using the concordance index(C-index);the survival variance of bladder cancer was partitioned into the relative contribution of clinical and transcriptional components within the framework of coxlmm.Results By integrating whole genes and clinical covariates in the TCGA training set,we confirmed that the power for prognostic prediction of coxlmm model(C-index=0.676)was higher than coxlasso model(C-index=0.655).The C-index of two models was 0.527 or 0.534 in the external validation set.When the three data sets were combined to be the training set,the prediction accuracy of coxlmm(C-index=0.671)is higher than that of coxlasso(C-index=0.650).When the GSE31684 was the training set,the prediction accuracy of coxlmm(C-index=0.553)is also slightly higher than that of coxlasso(C-index=0.550).The C-index of two models was 0.632 or 0.633 in the external validation set.The survival variance partition demonstrated the clinical contribution was higher than transcriptomic contribution for bladder cancer.Conclusion This study successfully built and validated a coxlmm model for the prognostic prediction of bladder cancer.This study indicated the aggregation of genome-wide transcriptomic information can improve prognostic prediction power of bladder cancer.
作者 陆皓杰 曾平 黄水平 Lu Haojie;Zeng Ping;Huang Shuiping(Department of Epidemiology and Health Statistics,School of Public Health,Xuzhou Medical University(221004),Xuzhou)
出处 《中国卫生统计》 CSCD 北大核心 2022年第1期25-30,共6页 Chinese Journal of Health Statistics
基金 江苏省自然科学基金资助项目(BK20181472) 教育部人文社会科学研究青年基金项目资助(18YJC910002) 中国博士后科学基金特别资助项目(2019T120465)和一等资助项目(2018M630607) 江苏省六大人才高峰项目(WSN-087) 徐州市社会发展项目(KC19017和KC20062) 江苏省高校青蓝工程优秀青年骨干教师项目 徐州医科大学博士后科学基金资助项目 徐州医科大学青年科技创新团队培育计划资助项目(TD202008)
关键词 线性混合模型 COX模型 基因表达 预后预测 膀胱癌 Linear mixed model Cox model Gene expression Prognostic prediction Bladder cancer
  • 相关文献

参考文献4

二级参考文献108

  • 1Breiman L. Random Forests. Statistics Department University of California Berkeley, CA 94720, January,2001.
  • 2Sander O, Sommer I, Lengauer T. Local protein structure prediction using discriminative models. BMC Bioinformatics,2006,7:14.
  • 3Bao L,Cui Y. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary informarion. Bioinformatics,2005,21 : 2185 -2190.
  • 4Jiang HY, Deng YP, Chen HS, et al. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics ,2004,5 : 81.
  • 5Zhang HP, Yu CY, Singer B. Cell and tumor classification using gene expression data: Construction of forests. Proe Natl Acad Sci USA, 2003,100:4168-4172.
  • 6Lunetta KL, Hayward LB, Segal J, et al. Screening large-scale association study data:exploiting interactions using random forests. BMC Genet,2004,5:32.
  • 7Pang H, Lin AP, Holford M, et al. Pathway analysis using random forests classification and regression. Bioinformatics,2006 ,22 :2028-2036.
  • 8Hoffmann K, Firth MJ, Beesley All, et al. Translating microarray data for diagnostic testing in childhood leukaemia. BMC Cancer, 2006,6 : 229.
  • 9Brett A, McKinney DM Reif, Ritchie MD. J H M Machine learning for detecting gene-gene interactions. Appl Bioinformatics, 2006,5 ( 2 ) : 77- 88.
  • 10Lin N, Wu BL, Jansen R, et al. Information assessment on predicting protein-protein interactions. BMC Bioinformatics,2004,5 : 154.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部