摘要
目前方法不能有效提取图像的多尺度特征并完全利用全局信息,对此提出一种新的全局信息引导的多尺度显著物体检测模型。设计了多尺度特征提升模块,提升了各个侧输出特征的多尺度表征能力;利用空洞空间卷积池化金字塔模块提取图像的全局特征;将全局特征直接与各个侧边输出的多尺度特征相融合,利用全局特征引导侧边特征聚焦于目标区域中有用的中低层特征;采用由粗至细的方式得到最终的预测结果。该模型在四个广泛使用的数据集上进行了测试,并与8种近3年具有代表性的方法进行比较。实验结果表明,该模型对各种场景的显著物体检测具有较好的鲁棒性,可以均匀高亮显著目标的同时抑制背景噪声。
Current methods cannot represent multi-scale features effectively and utilize global information completely.This paper proposes a novel salient object detection approach using global context guide.We designed a multi-scale feature enhancement module to improve the capability of feature representation of multi-level side-output features.We utilized the atrous spatial pyramid pooling module to obtain the global features.The global features were directly fused with the multi-scale side-output features,which guided the side features to focus on the useful middle and low level features in the target area.The finally estimated results were obtained in a coarse-to-fine manner.We compared our approach with 8 state-of-the-art methods on four public benchmark datasets.Results demonstrate the robustness of the proposed approach on various scenarios,and it can evenly highlight salient targets while suppressing background noise.
作者
陈小伟
张裕
林家骏
张晴
Chen Xiaowei;Zhang Yu;Lin Jiajun;Zhang Qing(Shanghai Institute of Technology,Shanghai 201418,China;East China University of Science and Technology,Shanghai 200237,China)
出处
《计算机应用与软件》
北大核心
2022年第3期146-153,共8页
Computer Applications and Software
基金
国家自然科学基金项目(61806126)
上海市自然科学基金项目(19ZR1455300)。
关键词
显著物体检测
显著性检测
全卷积网络
多尺度特征
显著图
Salient object detection
Saliency detection
Fully convolutional network
Multi-scale features
Saliency map