摘要
针对IaaS(Infrastructure as a Service)云计算中资源调度的多目标优化问题,提出一种基于改进多目标布谷鸟搜索的资源调度算法。在多目标布谷鸟搜索算法的基础上,通过改进随机游走策略和丢弃概率策略提高了算法的局部搜索能力和收敛速度。以最大限度地减少完成时间和成本为主要目标,将任务分配特定的VM(Virtual Manufacturing)满足云用户对云提供商的资源利用的需求,从而减少延迟,提高资源利用率和服务质量。实验结果表明,该算法可以有效地解决IaaS云计算环境中资源调度的多目标问题,与其他算法相比,具有一定的优势。
Aiming at the multi-objective optimization problem of resource scheduling in IaaS cloud computing,a resource scheduling algorithm based on improved multi-objective cuckoo search is proposed.Based on the multi-objective cuckoo search algorithm,the algorithm improved the local search ability and convergence speed by improving the random walk strategy and discard probability strategy.The main objective was to minimize the makespan time and cost,and the assign tasks to specific VMs to meet the needs of cloud users for resource utilization by cloud providers,thereby reducing latency,improving resource utilization and service quality.The experimental results show that the proposed algorithm can effectively solve the multi-objective problem of resource scheduling in the IaaS cloud computing environment,and has certain advantages compared with other algorithms.
作者
程曦
宋铁成
Cheng Xi;Song Tiecheng(School of Health Caring Industry,Sichuan University of Arts and Science,Dazhou 635000,Sichuan,China;School of Communications and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处
《计算机应用与软件》
北大核心
2022年第3期241-246,253,共7页
Computer Applications and Software
基金
国家自然科学基金项目(61702065)
四川省教育信息化应用与发展研究中心项目(JYXX18-030)。
关键词
云计算
资源调度
多目标布谷鸟搜索
多目标优化
Cloud computing
Resource scheduling
Multi-objective cuckoo search
Multi-objective optimization