期刊文献+

基于压缩感知的混合光谱解析算法

RESEARCH ON HYBRID SPECTRUM DECOMPOSITION ALGORITHM BASED ON COMPRESSED SENSING
下载PDF
导出
摘要 压缩感知利用信号的稀疏性通过求解欠定线性系统的解来有效地重建信号,其稀疏性要求信号在某个域中是稀疏的。压缩感知理论认为一般情况下,信号的相关性越小,恢复算法的性能越好。求解压缩感知问题的方法有贪婪追踪、凸松弛方法、迭代收缩等算法,以及贝叶斯框架、置信传播等。从欠定线性矩阵方程角度讨论压缩感知问题,通过两种不同量测矩阵(谱库)的具体数值实验,重点研究了OMP、LARS和StOMP三个稀疏恢复算法在混合光谱解析时的性能和存在的问题,并给出相应的优化建议。 Compressed sensing takes advantage of the sparsity of the signal and reconstructs the signal by solving the solution of an underdetermined linear system.Sparsity requires signals to be sparse in a certain domain.Compressed sensing theory holds that in general,the smaller the correlation of the signal,the better the performance of the recovery algorithm.Methods to solve the compressed sensing problem include greedy tracking,convex relaxation method,iterative shrinkage algorithm,Bayesian framework and belief propagation algorithm,etc.This article started with underdetermined linear matrix equations and introduced the basics of compressive sensing.Through the specific numerical experiments of two different spectral libraries,the performance and existing problems of the three sparse recovery algorithms of OMP,LARS,and StOMP in mixed spectral analysis were discussed,and corresponding optimization suggestions were given.
作者 伍娟妮 Wu Juanni(RiRi Sheng Intelligent Technology Development/Shandong Co.,Ltd.,Yantai 264006,Shandong,China)
出处 《计算机应用与软件》 北大核心 2022年第3期285-294,共10页 Computer Applications and Software
关键词 压缩感知 混合光谱解析 线性模型 欠定系统 正交匹配追踪算法(OMP) 最小角回归(LARS) 分段正交匹配追踪(stOMP) Compressed sensing Mixed spectral decomposition Linear model Underdetermined linear system Orthogonal matching pursuit(OMP) Least angle regression(LARS) Stage-wise orthogonal matching pursuit(StOMP)
  • 相关文献

参考文献5

二级参考文献220

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2D Donoho. Compressed sensing[ J]. IEEE Trans Inform Theory,2006,52(4) : 1289 - 1306.
  • 3M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Appfication to compressed sensing and other inverse problems [ J ]. IEEE J Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1(4) :586 - 598.
  • 4I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for finear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57( 11 ):1413 - 1457.
  • 5T Blumensath, M Davies. Iterative hard thresholding for compressed sensing[ J]. Appl Comput Harmon Anal, 2009, 27 ( 3 ) : 265 - 274.
  • 6A C Gilbert, S Guha, P Indyk, S Muthukrishnan, M J Strauss. Near-optimal sparse Fourier representations via sampling[ A]. Proc. of the 2002 ACM Symposium on Theory of Computing STOC[C]. Montreal, Quebec, Canada, 2002. 152 - 161.
  • 7E Candbs, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans Inform Theory ,2006,52(2) :489- 509.
  • 8E Candes, T Tao. Error correction via linear programming [A]. Proc. of 46th Annual IEEE Symposium on Foundations of Computer Science FOCS [ C ] . Pittsburgh, Pennsylvania, USA. 2005.295 - 308.
  • 9S Mallat, Z Zhang. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Singal Processing, 1993,41 (12) : 3397 - 3415.
  • 10E J Candes, T Tao. Decoding by linear programming [ J ]. IEEE Trans Inform Theory,2005,51 (12):4203- 4215.

共引文献443

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部