期刊文献+

基于注意力机制的鞋型识别算法 被引量:5

Shoe Type Recognition Algorithm Based on Attention Mechanism
原文传递
导出
摘要 根据现场遗留鞋印推断出作案人所穿鞋型,再从周围监控视频中搜索嫌疑鞋型已成为公安机关侦破案件的重要技战法。针对该技战法完全依赖人工筛查、受主观影响大、易造成漏检等问题,提出了一种基于注意力机制的鞋型识别算法。首先,建立了贴近公安刑侦实战、样本容量为300的多背景监控鞋型数据集。然后,提出了一种注意力机制模型,以增强残差网络(ResNet50)对鞋子重要特征的提取能力。最后,对比了选取不同特征层输出作为鞋子特征及不同卷积特征聚合方法对识别精度的影响。为了增强模型的泛化能力,在损失函数中加入Label Smoothing。在多背景数据集上的实验结果表明,本算法的Rank-1、平均精度均值分别达到74.32%和56.97%。 It has become an important technique and tactics for the public security organs to infer the type of shoes worn by the perpetrators according to the shoe prints left at the scene,and then search the suspected type of shoes in the surrounding surveillance video.This technique is completely dependent on manual screening,which is greatly affected by subjective factors and easily leads to problems such as missed detection.To solve this problem,this paper proposes a shoe type recognition algorithm based on attention mechanism.First,close to the actual combat of public security criminal investigation,a multi background monitoring shoe data set with sample size of 300 is established.Then,an attention mechanism model is proposed to enhance the ability of the residual network(ResNet50)to extract important features of shoes.Finally,the effects of selecting the output of different feature layers as shoe features and different convolution feature aggregation methods on the recognition accuracy are compared.In order to enhance the generalization ability of the model,label smoothing is added to the loss function.The experimental results on the multi background data set show that the Rank-1 and mean average precision of the algorithm are 74.32%and 56.97%,respectively.
作者 张家钧 唐云祁 杨智雄 耿鹏志 Zhang Jiajun;Tang Yunqi;Yang Zhixiong;Geng Pengzhi(School of Investigation,People’s Public Security University of China,Beijing 100038,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第2期357-365,共9页 Laser & Optoelectronics Progress
基金 公安部技术研究计划(2020JSYJC21) 中央高校基本科研业务费(2021JKF203)。
关键词 机器视觉 深度学习 鞋型识别 注意力机制 特征聚合 machine vision deep learning shoe type recognition attention mechanism features aggregation
  • 相关文献

参考文献7

二级参考文献17

共引文献37

同被引文献26

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部