期刊文献+

基于粒子群算法的车队滑模控制器参数优化 被引量:4

Parameter optimization of sliding mode controller for fleet based on particle swarm optimization
下载PDF
导出
摘要 为保证车辆驾驶过程中的稳定性和安全性,对智能网联式车队控制器参数的优化和选取展开研究。采用领头车-前车跟随策略进行车辆编队,构建网联式车队纵向控制动力学模型,结合滑模控制器规律,利用切换函数,实现网联式车队车辆自适应控制。在此基础上,利用粒子群优化算法,将滑模控制器4个参数设置为空间粒子,通过搜索个体极值和全局极值动态调整粒子参数,获得滑模控制器的最优参数。采用MATLAB软件进行仿真研究,仿真结果表明,相对于给定的未优化控制器参数,优化后的滑模控制器具有响应快、精度高等特点,能够有效实现网联式车队的稳定控制。 To ensure the stability and safety of the vehicle during driving,the optimization and selection of networked fleet controller parameters was studied.The leader-predecessor following strategy was used for vehicle formation.The longitudinal control dynamics model of networked fleet was constructed.The networked fleet vehicle control strategy was realized by the sliding mode controller law and switching function.Particle swarm optimization algorithm was adopted to set the four parameters of the sliding mode controller space as particles.The particle parameters were adjusted dynamically by seeking the individual parameters and global extreme values to obtain the optimal parameters of the sliding mode controller.The simulation results researched through MATLAB show that networked fleet controller based on particle swarm optimization algorithm which compared with the given unoptimized controller parameters has the characteristics of fast response and high accuracy,and the optimized sliding mode controller can control the networked fleet stably and effectively.
作者 李沁颖 曹青松 王涛涛 LI Qin-ying;CAO Qing-song;WANG Tao-tao(Information Engineering College,Jiangxi University of Technology,Nanchang 330098,China;Intelligent Engineering College,Jiangxi University of Technology,Nanchang 330098,China)
出处 《计算机工程与设计》 北大核心 2022年第3期808-813,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(51765021) 江西省科技厅重点研发基金项目(20181BBE50012) 江西科技学院自然科学基金项目(ZR1904、ZR1910)。
关键词 网联式车队 滑模控制器 粒子群算法 参数优化 车辆控制 networked fleet sliding mode controller particle swarm optimization parameter optimization vehicle control
  • 相关文献

参考文献11

二级参考文献74

  • 1朱谊强,张洪才,程咏梅,杨涛,赵春晖.基于Adaboost算法的实时行人检测系统[J].计算机测量与控制,2006,14(11):1462-1465. 被引量:13
  • 2康燕,孙俊,须文波.具有量子行为的粒子群优化算法的参数选择[J].计算机工程与应用,2007,43(23):40-42. 被引量:19
  • 3RAZA H, LOANNOU P. Vehicle following control design for automated highway systems [ J ]. IEEE Trans on Control Systems, 1996, 16(6): 43-60.
  • 4VAHIDI A, ESKANDAIMAN A. Research advances in intelligent collision avoidance and adaptive cruise control [J ]. Intelligent IEEE Trans on Transportation Systems, 2003, 4(3) : 143-153.
  • 5RAJAMANI R. Vehicle dynamics and control[ M]. Second Edition. Heidelberg: Springer Science & Business Media, 2011,.
  • 6ZHANG J, IOANNOU P A. Longitudinal control of heavy trucks in mixed traffic: environmental and fuel economy considerations [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7( 1): 92-104.
  • 7NARANJO J E, GONZALEZ C, REVIEJO J, et al. Adaptive fuzzy control for inter-vehicle gap keeping [ J ]. IEEE Transactions on Intelligent Trans Systems, 2003, 4(3) : 132-142.
  • 8JENNESS J W, LERNER N D, MAZOR S, et al. Use of advanced in-vehicle technology by young and older early adopters[ R]//Survey Results on Adaptive Cruise Control Systems. Washington, DC: National Highway Traffic Safety Administration, 2008.
  • 9MARTINEZ J J, de CANUDAS W C. A safe longitudinal control for adaptive cruise control and stop-and-go scenarios[J]. IEEE Transactions on Control Systems Technology, 2007, 15(2): 246-258.
  • 10MOON S, YI K. Human driving data-based design of a vehicle adaptive cruise control algorithm [ J ]. Vehicle System Dynamics, 2008, 46( 8): 661-690.

共引文献81

同被引文献54

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部