期刊文献+

自动化仪表检测中的车间调度问题优化与仿真 被引量:1

Optimization and simulation of job shop scheduling problem in automatic instrument test
下载PDF
导出
摘要 为解决自动化仪表检测工作中的作业车间调度问题以提高其工作效率,提出一种基于生命力选择的精英鲸鱼优化算法。利用生命力选择方法替换表现较差的个体,克服鲸鱼优化算法在调节搜索范围方面的不足,避免种群陷入局部最优,加快种群向全局最优解收敛的速度。结合标准实例和北京东方计量测试研究所的自动化仪表检测实例,对算法进行仿真分析,验证了精英鲸鱼优化算法在求解作业车间调度问题的有效性和稳定性,其可以满足自动化仪表检测工作中的日常检测任务调度需求。 To solve the job shop scheduling problem in automatic instrument test and improve its efficiency,an elite whale optimization algorithm(EWOA)based on vitality selection was proposed.The poor performance individuals were replaced using vitality selection.The problem of adjusting search scope of whale optimization algorithm was effectively addressed,and populations were prevented from falling into local optima and the population convergence was accelerated to global optimal solution.The simulation experiments were carried out in standard test problems and the automatic-instrument-test problems in Beijing Orient Institute of Measurement and Test.The simulation results indicate that EWOA has better effectiveness and robustness,which demonstrates that it is able to satisfy the real scheduling requirements in automatic instrument test.
作者 武子科 潘攀 彭诚 吕秀莎 梁子涵 张洪光 WU Zi-ke;PAN Pan;PENG Cheng;LYU Xiu-sha;LIANG Zi-han;ZHANG Hong-guang(Beijing Orient Institute of Measurement and Test,China Academy of Space Technology,Beijing 100093,China;School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《计算机工程与设计》 北大核心 2022年第3期814-820,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61876199)。
关键词 作业车间调度 自动化仪表检测 鲸鱼优化算法 最小化最大完工时间 调度效率 job shop scheduling automatic instrument test whale optimization algorithm minimizing makespan scheduling efficiency
  • 相关文献

参考文献6

二级参考文献37

  • 1Blazewicz J, Finke G, Haopt G. New trends in machine scheduling [J]. Europen Journal of Operational Research, 1988, 37: 303-317.
  • 2Pezzella F, Morganti G, CiaschettiG. A genetic algorithm for the flexible job-shop scheduling problem [J]. Computers & Operation Researeh, 2008, 35 (10)I 3202-3212.
  • 3Gao J, Sun L, Gen M. A hybrid genetic and variable neigh- borhood descent algorithm for flexible job shop scheduling prob- lems [J]. Computers & Operations Research, 2008, 35 (9): 2892-2907.
  • 4Dai Min, Tang Dunbing, Zheng Kun, et al. An improved ge- netic-simulated annealing algorithm based on a hormone modula- tion mechanism for a flexible flow-shop scheduling problem [J]. Advances in Mechanical Engineering, 2013, 13 (2): 260-280.
  • 5Paolo B. Routing and scheduling in flexiblejob shop by tabu search [J]. Annals of Operations Research, 1993, 22 (2): 157-183.
  • 6Wang L, Zhou G, Xu Y, et al. An effective artificial bee colony algorithm for the flexible job-shop scheduling problem [-J]. International Journal of Advanced Manufacturing Tech- nology, 2012, 60 (1-4): 303-315.
  • 7Xing L, Chen Y, Wang P, et al. A knowledge-based ant co- lony optimization for flexible job shop scheduling problems [J]. Applied Soft Computing, 2010, 10 (3): 888-896.
  • 8鞠海华,刘长安,张伟,邢海伟,吴寿喜.基于带精英策略的NSGA-Ⅱ遗传算法的车间作业调度研究[J].组合机床与自动化加工技术,2008(4):15-19. 被引量:3
  • 9沈斌,周莹君,王家海.基于自适应遗传算法的Job Shop调度问题研究[J].计算机应用,2009,29(B12):161-164. 被引量:12
  • 10张超勇,董星,王晓娟,李新宇,刘琼.基于改进非支配排序遗传算法的多目标柔性作业车间调度[J].机械工程学报,2010,46(11):156-164. 被引量:138

共引文献73

同被引文献16

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部