期刊文献+

Performance improvement approaches for optical fiber SPR sensors and their sensing applications 被引量:5

原文传递
导出
摘要 Optical fiber surface plasmon resonance(SPR) sensors point toward promising application potential in the fields of biomarker detection,food allergen screening,and environmental monitoring due to their unique advantages.This review outlines approaches in improving the fiber SPR sensing performance,e.g.,sensitivity,detection accuracy,reliability,cross-sensitivity,selectivity,convenience and efficiency,and corresponding sensing applications.The sensing principles of SPR sensors,especially the performance indicators and their influencing factors,have been introduced.Current technologies for improving the fiber SPR performance and their application scenarios are then reviewed from the aspects of fiber substrate,intrinsic layer(metal layer),and surface nanomaterial modification.Reasonable design of the substrate can strengthen the evanescent electromagnetic field and realize the multi-parameter sensing,and can introduce the in situ sensing self-compensation,which allows corrections for errors induced by temperature fluctuation,non-specific binding,and external disturbances.The change of the intrinsic layer can adjust the column number,the penetration depth,and the propagation distance of surface plasmon polaritons.This can thereby promote the capability of sensors to detect the large-size analytes and can reduce the full width at half-maximum of SPR curves.The modification of various-dimensionality nanomaterials on the sensor surfaces can heighten the overlap integral of the electromagnetic field intensity in the analyte region and can strengthen interactions between plasmons and excitons as well as interactions between analyte molecules and metal surfaces.Moreover,future directions of fiber SPR sensors are prospected based on the important and challenging problems in the development of fiber SPR sensors.
出处 《Photonics Research》 SCIE EI CAS CSCD 2022年第1期126-147,共22页 光子学研究(英文版)
基金 National Natural Science Foundation of China(61735011, 61775161, 61922061) Science Fund for Distinguished Young Scholars of Tianjin (19JCJQJC61400) National Equipment Program of China (2013YQ030915)。
  • 相关文献

参考文献4

二级参考文献4

共引文献5

同被引文献59

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部