摘要
Electrochemical tests were developed to investigate the electrochemical dissolution behavior of gold and its main coexistent sulfide minerals in acid thiocyanate solutions.The optimal leaching conditions for gold in acidic thiocyanate system were pH 2,0.15 mol·L^(-1) thiocyanate and 0.2 g·L^(-1)Fe^(3+).Fe^(3+) addition to the acidic thiocyanate system promoted gold dissolution significantly,arsenopyrite dissolution was inhibited,chalcopyrite dissolution was increased,and the dissolution behavior of other associated minerals remained mostly unchanged.Thiocyanate made gold and associated mineral leaching easier.The galvanic corrosion effect of gold and its main coexistent sulfide minerals in an acidic thiocyanate-free system was that the chalcocite,arsenopyrite and pyrite acted as a cathode to reduce anodic gold dissolution;galena as an anode undergoes oxidation to inhibit anodic gold dissolution.There was almost no galvanic corrosion behavior between stibnite,yellow sphalerite and black sphalerite and gold.Thiocyanate addition changed the galvanic corrosion behavior of stibnite and yellow sphalerite in the thiocyanate system,which inhibited anodic gold dissolution.In the acidic thiocyanate system in the presence of ferric iron,the arsenopyrite promoted anodic gold dissolution,the chalcocite and gold were mostly free of galvanic corrosion,and the remaining minerals inhibited anodic gold dissolution.
基金
This study was financially supported by the National Key Research and Development Project(No.2018YFC1900301)
the National Natural Science Foundation of China(No.51504031)
the Innovation Fund of the General Research Institute for Nonferrous Metals(No.53319,533801).