期刊文献+

一种基于Inception-V4的车位状态检测方法 被引量:1

A parking space state detection method based on Inception-V4
下载PDF
导出
摘要 针对城市停车难,车位检测环境复杂等情况,研究了一种基于Inception-V4算法的车位状态检测方法。在Inception-V4网络结构基础上使用Leaky_ReLU代替ReLU作为激活函数,解决ReLU激活函数引起的神经元失活问题;在网络分类层前添加FReLU激活函数层和多个全连接层,使其获得有更丰富语义信息的特征向量,防止了网络过拟合问题,提高车位状态检测模型的整体性能。基于PKLot停车场数据集的实验结果表明,该方法对车位状态检测准确率较原模型有较大程度的提升。 Due to the difficulty of parking in cities and the complex detection environment of parking spaces,a parking space state detection method based on Inception-V4 algorithm is studied in this paper.On the basis of the Inception-V4 network structure,Leaky_ReLU is used instead of ReLU as the activation function to solve the problem of neuron inactivation caused by the ReLU activation function;the FReLU activation function layer and multiple fully connected layers are added before the network classification layer to obtain feature vectors with richer semantic information,which prevents network over-fitting problems and improves the overall performance of the parking space state detection model.The experimental results on PKLot parking lot data set show that the accuracy of the parking space state detection of this method is greatly improved compared with the original model.
作者 王栋 蔡斌斌 宰昶丰 Wang Dong;Cai Binbin;Zai Changfeng(College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao,Shandong 266590,China)
出处 《计算机时代》 2022年第3期5-10,共6页 Computer Era
关键词 车位检测 深度学习 Inception-V4 Leaky_ReLU FReLU parking space detection deep learning Inception-V4 Leaky_ReLU FReLU
  • 相关文献

参考文献4

二级参考文献78

  • 1陈利军,陈军,廖安平,何超英.30m全球地表覆盖遥感分类方法初探[J].测绘通报,2012(S1):350-353. 被引量:23
  • 2汪权方,李家永,陈百明.基于地表覆盖物光谱特征的土地覆被分类系统——以鄱阳湖流域为例[J].地理学报,2006,61(4):359-368. 被引量:39
  • 3曹云刚.多时相ASAR数据的地表覆盖分类研究[J].测绘科学,2007,32(5):103-105. 被引量:12
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 5Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 6Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 7Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 8Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 9Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 10Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.

共引文献656

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部