摘要
针对传统推荐模型只能提取低阶特征,不能挖掘高阶组合特征,且推荐结果往往没有考虑到Bias的问题,本文提出一种适用于游戏推荐场景的基于DeepFM的校准游戏推荐方法。此方法充分发挥了DeepFM能够挖掘低阶和高阶特征的能力,利用Steam平台的数据集训练优化模型,并进行了测试验证,同时还运用校准推荐对结果进行去偏得到最后的推荐列表。测试结果表明,改进优化后的推荐模型具有更好的表现,评测指标AUC值相较对比模型提高了3%~4%,经过校准的推荐列表更加拟合用户交互。
出处
《广播电视网络》
2022年第3期116-120,共5页
RADIO & TELEVISION NETWORK
基金
福建省自然科学基金(基金编号:2019J01221)
闽都创新实验室自主部署项目(项目编号:2020ZZ111)支持。