期刊文献+

基于多级排样方式的单一矩形件卷材下料算法 被引量:1

Coil cutting algorithm of single rectangular pieces based on multi-stage layout
原文传递
导出
摘要 讨论了单一矩形件卷材下料问题,即采用剪切工艺将卷材切割出一定数量的同种矩形件,目标为使得所耗费的卷材长度最小。提出一种基于隐式枚举法和动态规划算法的优化下料算法。切割过程由2个阶段组成,第1阶段将卷材切割成宽度相同、长度不大于剪刃长度的段,第2阶段将段切割成矩形件。首先,采用隐式枚举法确定所有需要考察的段的长度,并采用动态规划算法确定不同长度段中矩形件的多级排样方式;然后,选择材料利用率最高的段,按照该段使用数量最大且不产生多余矩形件的原则确定该段的使用数量;最后,选择一个长度最小的段来满足矩形件的剩余需求量。与普通下料算法进行对比,实验结果表明:基于隐式枚举法和动态规划算法的优化下料算法可以有效地解决单一矩形件卷材下料问题。 The coil cutting problem of single rectangular piece was discussed, that was, a certain number of the same kind of rectangular pieces were cut from the coil by the shearing process, and the goal was to minimize the length of the coil consumed. Then, an optimal cutting algorithm was proposed based on the implicit enumeration method and the dynamic programming algorithm, and the cutting process consisted of two stages. In the first stage, the coil was cut into segments with the same width and the length less than the cutting blade length, and in the second stage, the segments were cut into rectangular pieces. First, the length of all the segments to be investigated was determined by the implicit enumeration method, and the multi-stage layout of rectangular pieces in the segments of different lengths was determined by the dynamic programming algorithm. Then, the segment with the highest material utilization rate was selected, and the number of use for this segment was determined according to the principle of the largest use for this section and no redundant rectangular pieces. Finally, the segment with the smallest length was selected to meet the remaining demand of rectangular pieces, and the above-mentioned cutting algorithm was compared with the ordinary cutting algorithm. The experimental results show that the optimal cutting algorithm based on implicit enumeration method and dynamic programming algorithm can effectively solve the coil cutting problem of single rectangular piece.
作者 覃广荣 丘刚玮 王坤 黄欣 Qing Guangrong;Qiu Gangwei;Wang Kun;Huang Xin(Department of Information and Electromechanical Engineering,Guangxi Agricultural Vocational and Technical University,Nanning 570003,China;Department of Information Engineering,Sichuan Institute of Information Technology,Guangyuan 628017,China)
出处 《锻压技术》 CAS CSCD 北大核心 2022年第2期73-77,共5页 Forging & Stamping Technology
基金 2019年第二批广西农业科技自筹经费项目(YKJ1929,Z2019102) 教育部新一代信息技术创新项目(2020ITA03027) 广西农业职业技术大学科学研究与技术开发计划课题(YKJ2124)。
关键词 矩形件 卷材下料问题 多级排样方式 动态规划 隐式枚举 rectangular pieces coil cutting problem multistage layout dynamic programming implicit enumeration
  • 相关文献

参考文献2

二级参考文献10

  • 1Cheng C H,Feiring B R,Cheng T C E.Cutting stock problem-a survey[J].International Journal of Production Economics,1994,36(3):291-305.
  • 2Ann Van Der Wilt.An algorithm for two-stage unconstrained guillotine cutting[J].European Journal of Operational Research,1995,84(2):494-498.
  • 3Wascher G,Haussner H,Schumann H.An improved typology of cutting and packing problems[J].European Journal of Operational Research,2007,183:1109-1130.
  • 4Cui Y.Generating optimal T-shape cutting patterns for rectangular blanks[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2004,218 (B8):857-866.
  • 5George,John A.Method for solving container packing for a single size of box[J].Journal of the Operational Research Society,1992,43(4):307-312.
  • 6Cui Yi,Huang L.Dynamic programming algorithms for generating optimal strip layouts[J].Computational Optimization and Applications,2006,33:287-301.
  • 7Agrawal P K.Minimizing trim loss in cutting rectangular blanks of a single size form a rectangular sheet using orthogonal guillotine cuts[J].European Journal of Operational Research,1993,64(3):410-422.
  • 8黄少丽,杨剑,侯桂玉,崔耀东.解决二维下料问题的顺序启发式算法[J].计算机工程与应用,2011,47(13):234-237. 被引量:20
  • 9易向阳,仝青山,潘卫平.矩形件二维下料问题的一种求解方法[J].锻压技术,2015,40(6):150-154. 被引量:23
  • 10朱春烽,仝太江,金石吉.大型变压器铁心制作中的夹紧力变化及控制[J].变压器,2016,53(6):16-17. 被引量:3

共引文献12

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部