期刊文献+

几类带空转移的n元伪加权自动机的关系

Relationships among several types of n-ary pseudo weighted automata with empty moves
下载PDF
导出
摘要 引入了n元伪加权有穷自动机——带有n个有限字符集的伪加权有穷自动机、分明型n元伪加权有穷自动机和确定型n元伪加权有穷自动机的概念。根据状态转移函数在每个字符集上是否带空转移,将以上自动机分为4类:带r-型空转移的n元伪加权有穷自动机和带空转移的n元伪加权有穷自动机和带r-型空转移的分明型n元伪加权有穷自动机和带空转移的分明型n元伪加权有穷自动机。给出了以上自动机所识别语言的定义并探究了它们之间的关系,讨论了状态转移函数在每个字符集上是否带空转移对其接受语言的影响。 The notions of n-ary pseudo weighted finite automata(i.e.,pseudo weighted finite auto-mata with n nonempty finite sets of symbols),crisp n-ary pseudo weighted finite automata,and deterministic n-ary pseudo weighted finite automata are introduced.According to the transition function with empty moves or not on each finite set of symbols,the above automata are classified into four forms:n-ary pseudo weighted finite automata with r-type empty moves,n-ary pseudo weighted finite automata with empty moves,crisp n-ary pseudo weighted finite automata with r-type empty moves,and crisp n-ary pseudo weighted finite automata with empty moves.The languages accepted by the above automata and the relationships among them are studied,and the influence of the transition function with empty moves or not on each finite set of symbols is discussed.
作者 赵路瑶 王海辉 李平 ZHAO Lu-yao;WANG Hai-hui;LI Ping(School of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710119,China)
出处 《计算机工程与科学》 CSCD 北大核心 2022年第2期364-371,共8页 Computer Engineering & Science
关键词 伪半环 n元伪加权有穷自动机 状态转移函数 空转移 关系 pseudo semiring n-ary pseudo weighted finite automata transition function empty move relationship
  • 相关文献

参考文献6

二级参考文献74

  • 1[1]Rosser, J. B. , Turquette, A. R. , Many-Valued Logics, Amsterdam: North-Holland, 1952.
  • 2[2]Ying, M. S. , A new approach for fuzzy topology (Ⅰ) (Ⅱ) (Ⅲ), Fuzzy Sets and Systems, 1991, 39(3): 303-321; 1992,47(2): 221 232; 1993, 55(2): 193-207.
  • 3[3]Ying, M. S., Fuzzifying topology based on complete residuated lattice-valued logic (Ⅰ), Fuzzy Sets and Systems, 1993, 56(3): 337-373.
  • 4[4]Pavelka, J., On fuzzy logic Ⅰ, Ⅱ, Ⅲ, Zeitschr f math Logik und Grundlagen d Math, 1979, 25: 45-52; 119-134;447-464.
  • 5[5]Wang, G. J. , Non-classical Mathematical Logics and Approximate Reasoning (in Chinese), Beijing: Science Press, 2000,207-274.
  • 6[6]Ying, M. S., Automata theory based on quantum logic. (Ⅰ), Int. J. Theor. Phys., 2000, 39(4): 981-991.
  • 7[7]Ying, M. S. , Automata theory based on quantum logic. (Ⅱ), Int. J. Theor. Phys. , 2000, 39(11 ): 2545-2557.
  • 8[8]Wee, W. G., On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification, Ph.D. Thesis, Purdue University, 1967.
  • 9[9]Kandel, A., Lee, S. C., Fuzzy Switching and Automata: Theory and Applications, London: Grane Russak, 1980, 171-262.
  • 10[10]Madan, M. G., George, N. S., Brian, R. G., Fuzzy Automata and Decision Processes, New York: North-Holland, 1977,133-175.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部