期刊文献+

基于多目标优化方法的一类k-Means自适应算法 被引量:4

A Class of k-Means Adaptive Algorithms Based on Multi-Objective Optimization Method
原文传递
导出
摘要 【目的】针对k-Means聚类算法及MinMax k-Means聚类算法需要人为提前给定聚类数量而导致数据划分准确率偏低以及MinMax k-Means算法聚类效果受类簇边缘点影响较大等不足提出解决方案。【方法】将k-Means和MinMax k-Means算法的目标函数相结合,建立多目标优化模型,提出基于多目标优化方法的k-Means算法。分析簇数异常情况下最小中心方差与最大簇内方差之间的关系。【结果】发现当分类簇数大于最优簇数时,最小中心方差小于最大簇内方差,据此提出了基于多目标优化方法的k-Means自适应算法。【结论】数值实验表明:提出的自适应算法在人工数据集和UCI标准数据集均具有较好的自适应性且聚类效果较优。 [Purposes]In view of the shortcomings of k-Means clustering algorithm and MinMax k-Means clustering algorithm,which need to be artificially given the number of clusters in advance,the accuracy of data division is low,and the clustering effect of MinMax k-Means algorithm is greatly affected by the edge points of clusters.[Methods]The multi-objective optimization model is established by combining the objective function of k-Means and MinMax k-Means algorithm,and the k-Means algorithm based on multi-objective optimization method is proposed.Analyze the relationship between the minimum central variance and the maximum intra-cluster variance in the case of abnormal cluster number.[Findings]It is found that when the number of classified clusters is greater than the optimal number of clusters,the minimum central variance is less than the maximum intra-cluster variance.Based on this,a k-Means adaptive algorithm based on multi-objective optimization method is proposed.[Conclusions]Numerical experiments show that the adaptive algorithm proposed here has good adaptability and clustering effect in both artificial dataset and UCI standard dataset.
作者 陈美杉 夏丹丹 赵克全 CHEN Meishan;XIA Dandan;ZHAO Kequan(School of Mathematical Science,Chongqing Normal University,Chongqing 401331»China)
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2022年第1期27-34,共8页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金重大项目(No.11991024) 国家自然科学基金面上项目(No.11671062,No.12171063) 重庆市高校创新研究群体项目(No.CXQT20014) 重庆市自然科学基金项目(No.cstc2021jcyj-msxmX0280) 重庆市教委科学技术研究项目(No.KJQN202100521)。
关键词 K-MEANS聚类算法 MinMax k-Means聚类算法 多目标优化 k-Means自适应算法 k-Means clustering algorithm MinMax k-Means clustering algorithm multi-objective optimization k-Means adaptive algorithm
  • 相关文献

同被引文献55

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部