摘要
针对轻量型目标检测网络对静态手势特征提取能力不足、错检率和漏检率高的问题,基于YOLOv4-tiny网络结构提出轻量型手势识别算法.首先引入表征力更强、成本更低的重影特征映射,增强网络获取多尺度手势特征的能力;然后嵌入通道注意力机制实现特征重标定,达到减少背景干扰的目的;最后采用Swish作为主激活函数,进一步提升手势识别准确率.在手势数据集上的实验结果表明,相比YOLOv4-tiny,所提算法具有较优的识别性能;并且对于不同环境条件下的多尺度手势,该算法能够实现精准的分类和实时的检测,对小尺度的手势具有更好的识别效果.
To solve the problem that the lightweight object detection network has insufficient ability to extract static gesture features,high false detection rate and missed detection rate,a lightweight gesture recognition algorithm is proposed based on YOLOv4-tiny network structure.First,a more powerful and low-cost ghost feature mapping is introduced to enhance the ability of network to obtain multi-scale gesture features.Then,the embedded channel attention mechanism realizes feature recalibration and achieves the purpose of reducing background interference.Finally,Swish is used as the main activation function to further improve the accuracy of gesture recognition.The experimental results on the gesture dataset show that the proposed algorithm has better recognition performance than YOLOv4-tiny.For multi-scale gestures under different environmental conditions,the algorithm achieves accurate classification as well as real-time detection,and has better recognition performance for small-scale gestures.
作者
范晶晶
薛皓玮
吴欣鸿
王美丽
Fan Jingjing;Xue Haowei;Wu Xinhong;Wang Meili(College of Information Engineering,Northwest A&F University,Xianyang 712100;Key Laboratory of Agricultural Internet of Things,Ministry of Agriculture and Rural Affairs,Xianyang 712100;Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service,Xianyang 712100)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2022年第3期403-414,共12页
Journal of Computer-Aided Design & Computer Graphics
基金
陕西省林业科学院科技创新计划(SXLK2021-0214)
农村农业部农业物联网重点实验室项目(2018AIOT-09)
国家自然科学基金青年科学基金(61702433)。
关键词
手势识别
轻量型网络
重影特征映射
通道注意力机制
gesture recognition
lightweight network
ghost feature mapping
channel attention mechanism