期刊文献+

采用逆近邻与影响空间的图像特征误匹配剔除方法 被引量:3

A Mismatch Elimination Method Based on Reverse Nearest Neighborhood and Influence Space
下载PDF
导出
摘要 针对结构相似、纹理重复的场景中特征匹配结果存在特征误匹配率较高的问题,采用密度聚类分析,提出一种基于逆近邻与影响空间的误匹配剔除方法.首先依据初始特征匹配候选集,利用特征匹配的全局信息构建特征匹配集,充分体现特征匹配对间的局部相似性、几何与运动一致性;然后采用基于逆近邻与影响空间的密度聚类分析,利用可扩展半径方法构造特征匹配聚类簇,并消除特征匹配聚类簇中的噪声点,从而有效地剔除了特征匹配集中的误匹配对.在标准DTU与古建筑数据集上的实验结果表明,与其他方法相比,该方法的平均精度、平均召回率和平均F分数均超过90%. To tackle the problem of usually high feature mismatching rate for the scene containing similar structures and repeated textures,a mismatch elimination method based on the reverse nearest neighborhood and influence space is proposed under the framework of clustering-based analysis.More specifically,after obtaining a tentative noisy set of matching candidates,a new feature matching dataset is built by making use of the global information,which could better represent the local similarity,the geometric and the motion consistencies between matching pairs.Then a new salable radius clustering method is designed to determine the clusters by combining the reverse nearest neighbors and influence space,by which outliers are deleted from the clusters and mismatches are effectively discarded.With the standard dataset DTU and ancient Chinese architectural dataset,the experimental results show that,the average precision,recall rate and F score of our method can over 90%compared with other feature matching method.
作者 胡立华 左威健 张继福 Hu Lihua;Zuo Weijian;Zhang Jifu(College of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第3期449-458,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61876122)。
关键词 特征匹配 误匹配 逆近邻 影响空间 几何运动一致性 feature matching mismatch reverse nearest neighborhood influence space geometric and motion consistencies
  • 相关文献

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部