期刊文献+

电子密度对太赫兹波在均匀非磁化等离子体中的传输影响

Effect of electron densities on the transmission of terahertz waves in uniform non-magnetized plasma
下载PDF
导出
摘要 针对地面与飞行器之间通信“黑障”问题,采用垂直极化的太赫兹波实现了地面与飞行器的通信。利用放电装置产生等离子体来模拟飞行器表面的等离子体鞘套,使用全光纤耦合式太赫兹时域光谱仪产生0~1 THz的太赫兹波,从实验的角度研究了垂直极化太赫兹波在不同电子密度的均匀非磁化等离子体中的传输特性。实验结果表明:电子密度越大,垂直极化太赫兹在等离子体中的传播速度越快;随着电子密度的增大,衰减会越小。所进行的研究为实现地面与飞行器之间的通信互联提供了重要的实验参考。 In order to solve the problem of communication between the ground and the aircraft,which is called“black barrier”,the vertically polarized terahertz wave is used to realize communication.Using the discharge device to generate plasma to simulate the plasma sheath on the surface of the aircraft,and an all-fiber coupled terahertz time-domain spectrometer is used to generate 0-1 THz waves.This paper studies the transmission characteristics of vertically polarized terahertz waves in uniform non-magnetized plasma with different electron densities from an experimental point of view.The experimental results show that the greater electron density,the faster propagation speed of the vertically polarized terahertz in the plasma;as the electron density increases,the attenuation becomes smaller.This research provides an important experimental reference for realizing the communication interconnection between the ground and the aircraft.
作者 蔡丽君 袁英豪 CAI Lijun;YUAN Yinghao(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《光学仪器》 2022年第1期80-86,共7页 Optical Instruments
基金 国家重点研发计划(2019YFC0810900) 上海市中央引导地方科技发展专项(YDZX20193100004960)。
关键词 太赫兹 均匀非磁化等离子体 电子密度 介质阻挡放电 光谱仪 传输特性 terahertz uniform non-magnetized plasma electron density dielectric blocking discharge spectrometer transmission characteristics
  • 相关文献

参考文献7

二级参考文献81

  • 1申金娥,荣健,刘文鑫.太赫兹技术在通信方面的研究进展[J].红外与激光工程,2006,35(z3):342-347. 被引量:24
  • 2蒋金,陈长兴,汪成,陈婷,周天翔,凌云飞.太赫兹波在非均匀等离子体鞘套中的传播特性[J].系统仿真学报,2015,27(12):3109-3115. 被引量:11
  • 3高铁锁,董维中,张巧芸.高超声速再入体烧蚀流场计算分析[J].空气动力学学报,2006,24(1):41-45. 被引量:12
  • 4杨宏伟,陈如山,张云.等离子体的SO-FDTD算法和对电磁波反射系数的计算分析[J].物理学报,2006,55(7):3464-3469. 被引量:23
  • 5Peter H. Siegel. Terahertz technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50 (3) : 910 - 928
  • 6M. S. Sherwin, C. A. Schmuttenmaer, P. H. Bucksbaum,Enditors. Opportunities in THz Science [R]. DOE-NSF-NIH Workshop, Arlington, VA, 2004
  • 7M. Yu. Tretyakov, S. A. Volokhov, G. Yu. Golubyatnikov et al.. Compact tunable radiation source at 180 - 1500 GHz frequency range [J]. Int. Journal of Infrared Millimeter Waves, 1999, 20(8):1443-1451
  • 8S. Komiyama. Far infrared emission from population-inverted hot carrier system in p-Ge [J]. Phys. Rev. Lett., 1982, 48(4) :271-274
  • 9E. Brundermann, A. M. Linhart, H. P. Roser et al..Miniaturization of p-Ge lasers: Progress toward continuous wave operation[J]. Appl. Phys. Lett., 1996, 68(10):1359-1361
  • 10Jun-ichi Shikata, Kodo Kawase, Hiromasa Ito. The generation and linewidth control of terahertz waves by parametric processes[J]. Electron. Comm. in Japan, Part 2, 2003, 86(5):52-63

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部