期刊文献+

Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy:Co-regulating effect from coarse Al_(2)Y and submicron Mg_(17)Al_(12) particles 被引量:7

下载PDF
导出
摘要 Grain boundary strengthening is an effective strategy for increasing mechanical properties of Mg alloys.However,this method offers limited strengthening in bimodal grain-structured Mg alloys due to the difficultly in increasing the volume fraction of fine grains while keeping a small grain size.Herein,we show that the volume fraction of fine grains(FGs,~2.5μm)in the bimodal grain structure can be tailored from~30 vol.%in Mg-9 Al-1 Zn(AZ91)to~52 vol.%in AZ91-1Y(wt.%)processed by hard plate rolling(HPR).Moreover,a superior combination of a high ultimate tensile strength(~405 MPa)and decent uniform elongation(~9%)is achieved in present AZ91-1Y alloy.It reveals that a desired bimodal grain structure can be tailored by the co-regulating effect from coarse Al_(2)Y particles resulting in inhomogeneous recrystallization,and dispersed submicron Mg_(17)Al_(12)particles depressing the growth of recrystallized grains.The findings offer a valuable insight in tailoring bimodal grain-structured Mg alloys for optimized strength and ductility.
出处 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1571-1582,共12页 镁合金学报(英文)
基金 primarily supported by The Natural Science Foundation of China under Grant Nos.51922048,51871108,51625402 and 51671093 Partial financial support came from the Fundamental Research Funds for the Central Universities,JLU,Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09) The Changjiang Scholars Program(T2017035)。
  • 相关文献

参考文献14

二级参考文献42

  • 1宋力,胡时胜.SHPB数据处理中的二波法与三波法[J].爆炸与冲击,2005,25(4):368-373. 被引量:168
  • 2Staiger M P, Pietak A M, Huadmai .1, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27 (9): 1728 -1734.
  • 3Zheng Y F, Gu X N, Witte F. Biodegradable metals. Materials Science and Engineering R: Reports, 2014, 77:1 -34.
  • 4Witte F, Hort N, Vogt C, et al. Degradable biomaterials based onmagnesium corrosion. Current Opinion in Solid State and Materials Science, 2008, 12(5-6): 63- 72.
  • 5Witte F. The history of biodegradable magnesium implants: a review. Acta Biomaterialia, 2010, 6(5): 1680-1692.
  • 6Choudhary L, Singh Raman R K. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomaterialia, 2012, 8(2): 916-923.
  • 7Erinc M, Sillekens W H, Mannens R, et al. Magnesium Technology. PA: TMS Warrendale, 2009, 209- 214.
  • 8Choudhary L, Singh Raman R K. Mechanical integrity of magnesium alloys in a physiological enviromnent: Slow strain rate testing based study. Engineering Fracture Mechanics, 2013, 103:94- 102.
  • 9Winzer N, Atrens A, Dietzel W, et al. Characterization of stress corrosion cracking (SCC) of MA1 alloys. Materials Science and Engineering A, 2008, 488(1 2): 339-351.
  • 10Atrens A, Dietzel W, Bala Srinivasan P, et al. Stress corrosion cracking (SCC) of magnesium alloys. In: Stress Corrosion Cracking: Theory and Practice. Cambridge, UK: Woodhead Publishing, 2011,341-380.

共引文献224

同被引文献221

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部