期刊文献+

一类拟线性方程弱解的存在性

Existence of Weak Solutions for a Class of Quasilinear Equations
下载PDF
导出
摘要 研究一类拟线性椭圆方程-Δu-uΔu^(2)=λ|u|^(q-2)u(inΩ)弱解的存在性,其中Ω⊂R^(N)是N>3的光滑有界区域,1<q<2,λ>0是一个实参数,且在边界处u=0.利用变量替换将拟线性问题转换到在零点处是奇异的和在无穷远处是超线性的半线性问题,并利用上下解和比较原理的方法证明拟线性方程弱解的存在性. In this paper,we consider existence of weak solutions for a class of quasilinear elliptic equation-Δu-uΔu^(2)=λ|u|^(q-2)u(inΩ).WhereΩ⊂R^(N) with N>3 is a smooth bounded region,1<q<2,λ>0 is a real parameter,and u=0 at the boundary.The quasilinear problem is transformed through variable substitution to a semilinear problem which remains singular at zero and behaves superlinearly at infinity,and the existence of weak solutions of quasilinear equations is proved by upper and lower solutions and comparison principle.
作者 陈文文 沈自飞 CHEN Wenwen;SHEN Zifei(College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua 321004,China)
出处 《湖州师范学院学报》 2022年第2期5-8,共4页 Journal of Huzhou University
基金 国家自然科学基金项目(12071438).
关键词 弱解 上下解 拟线性方程 weak solution upper and lower solutions quasilinear equation
  • 相关文献

参考文献1

二级参考文献1

  • 1K.L. Adams,J.R. King,R.H. Tew. Beyond-all-orders effects in multiple-scales asymptotics: travelling-wave solutions to the Kuramoto-Sivashinsky equation[J] 2003,Journal of Engineering Mathematics(3-4):197~226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部