期刊文献+

基于智能算法的储粮通风过程中温度场预测 被引量:3

Temperature Field Prediction of Grain Storage Ventilation Process Based on Intelligent Algorithm
下载PDF
导出
摘要 粮食的储备对于一个国家来说十分重要,是关乎民生的重要战略资源。储粮对于温度要求十分严格,机械通风是保持粮仓环境温度的重要方法。针对传统机械通风不能准确识别通风时机而导致的风机损耗和粮食损害问题,选用RBF神经网络建立温度预测模型,利用粒子群算法(Particle Swarm Optimization,PSO)及列文伯格-马夸尔特算法(Levenberg-Marquard,LM)优化网络的参数。仿真结果可以看出,用PSO算法和LM算法优化后的神经网络模型预测精度更加准确,与用PSO优化后的RBF神经网络进行比较后可知,PSO-LM-RBF算法预测误差小,模型更加稳定。 Grain reservation is of great importance to a country,which is an important strategic resource related to people’s livelihood.The temperature requirement for grain storage is very strict.Mechanical ventilation is an important method to maintain the temperature of granary.To address the problem of fan damage and grain deterioration caused by the failure of accurately identify the ventilation time by traditional mechanical ventilation,RBF neural network was used to establish a temperature prediction model.Particle Swarm Optimization(PSO)and Levenberg-Marquard(LM)algorithms were used to optimize parameters of the network.As simulation results suggested,the accuracy of neural network model optimized by both PSO algorithm and LM algorithm was more accurate.Compared to the RBF neural network optimized by PSO algorithm,the prediction error of PSO-LM-RBF algorithm was smaller.In addition,the PSO-LM-RBF model is more stable.
作者 黄琦兰 王涛 HUANG Qi-lan;WANG Tao(School of Control Science and Engineering,Tiangong University,Tianjin 300387,China)
出处 《保鲜与加工》 CAS 2022年第3期30-34,共5页 Storage and Process
关键词 机械通风 RBF神经网络 PSO算法 LM算法 温度预测 mechanical ventilation RBF neural network PSO algorithm LM algorithm temperature prediction
  • 相关文献

参考文献9

二级参考文献57

  • 1朱春侠,童淑敏,胡景华,毕玉革,武佩.BP神经网络在日光温室湿度预测中的应用[J].农机化研究,2012,34(7):207-210. 被引量:13
  • 2郝万君,强文义,柴庆宣,胡林献.基于粒子群优化的一类模糊控制器设计[J].控制与决策,2007,22(5):585-588. 被引量:16
  • 3路茜玉.粮油储藏学[M].北京:中国财经出版社,1988..
  • 4范永胜,徐治皋,陈来九.基于动态特性机理分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报,1997,17(1):23-28. 被引量:205
  • 5Shi Y, Eberhart R C. Particle Swarm Optimization with Fuzzy Adaptive Inertia Weight[ J]. Proc Workshop on Particle Swarm Optimization ,2001:578 - 580.
  • 6Shi Y,Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization [ J ]. Proc IEEE International Congress on Evolutionary Computation ( CEC 2001 ), Vol. 1:1123 - 1125.
  • 7KENNEDY J, EBERHART R C. Particle swarmoptimization[C]//Proceedings of IEEE InternationalConference on Neural Networks. [S.l.]. IEEE, 1995:1942-1948.
  • 8SHI Y H, EBERHART R C. A modified particle swarmoptimizer[C]//Proceedings of IEEE Congress onEvolutionary Computation(CEC 1998). Piscataway: IEEE,1998: 69-73.
  • 9SHI Y H, EBERHART R C. Parameter selection in particleswarm optimization[C]//7th International Conference,Evolutionary Programming VII. Berlin Heidelberg: Springer,1998,1447: 591-600.
  • 10LIU Y,ZHENG Q, ZHEWEN S, et al. Center particle swarmoptimization [J]. Neurocomputing, 2007, 70(4): 672-679.

共引文献147

同被引文献63

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部